問題文全文(内容文):
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y=y^x \\
\log_x y+\log_y x=\dfrac{13}{6}
\end{array}
\right.
\end{eqnarray}$
東北大過去問
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y=y^x \\
\log_x y+\log_y x=\dfrac{13}{6}
\end{array}
\right.
\end{eqnarray}$
東北大過去問
単元:
#数A#数Ⅱ#整数の性質#ユークリッド互除法と不定方程式・N進法#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y=y^x \\
\log_x y+\log_y x=\dfrac{13}{6}
\end{array}
\right.
\end{eqnarray}$
東北大過去問
連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y=y^x \\
\log_x y+\log_y x=\dfrac{13}{6}
\end{array}
\right.
\end{eqnarray}$
東北大過去問
投稿日:2020.11.30