高等学校入学試験予想問題:開成高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:開成高等学校~全国入試問題解法

問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
単元: #数学(中学生)#開成高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
投稿日:2024.01.22

<関連動画>

【ここは自力で…!】文字式:同志社国際高等学校~全国入試問題解法

単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#同志社国際高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
\( a+b=\frac{1}{2}\) , \( b+c=\frac{1}{3}\) , \( c+a=\frac{1}{6}\)のとき
\( a^2+b^2+c^2+2ab+2bc+2ca\)
の値を求めよ
この動画を見る 

÷5の面白い計算方法

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数学(中学生)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
÷5の面白い計算方法
この動画を見る 

【中学数学】数学用語チェック絵本 act2 vol.4 平行と合同

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行と合同の単元の用語をチェックしていきます.
この動画を見る 

2022東北医科薬科大(医)微分・積分の基本問題

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3$上の$(P,f(P))$における接線を$\ell $とする.
(1)$f(x)$と$\ell$の共有点が接線のみである$P$の範囲を求めよ.
(2)$P$が最小値のとき,$f(x)$と$\ell$で囲まれる面積を求めよ.

東北医科薬科大(医)過去問
この動画を見る 

指数の連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
2^{x-y}-x-y = 0 \\
2-(x+y)^{x-y}=0
\end{array}
\right.
\end{eqnarray}
x=? y=?
この動画を見る 
PAGE TOP