高等学校入学試験予想問題:開成高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:開成高等学校~全国入試問題解法

問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
単元: #数学(中学生)#開成高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
投稿日:2024.01.22

<関連動画>

【中2数学/期末テスト対策】連立方程式の利用①

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1個100円のりんごと、1個150円のバナナを合わせて10個買うと、代金は1200円になりました。
りんごとバナナをそれぞれ何個買ったか求めなさい。
この動画を見る 

いろいろな四角形~台形・平行四辺形・ひし形・長方形・正方形~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
いろいろな四角形
台形・平行四辺形・ひし形・長方形・正方形についてわかりやすく解説!
この動画を見る 

図形問題 中学生範囲

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ABCD$と$CEFG$は正方形である.
$AB:CE$を求めよ.

この動画を見る 

mathematical formula : Shirotan's cute kawaii math show 

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#平方根#文字と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
a=2(√13-2)の整数部分b,小数部分cとする。
この時、(a+3b+1)(c+1)の値を求めよ
この動画を見る 

高校入試にしては頑張った出題 愛光学園

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{180-3n}$が整数となる最小の①自然数n②正の有理数nを求めよ.

愛光学園過去問
この動画を見る 
PAGE TOP