高等学校入学試験予想問題:開成高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:開成高等学校~全国入試問題解法

問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
単元: #数学(中学生)#開成高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
投稿日:2024.01.22

<関連動画>

【数学】中2-38 一次関数の利用① 料金編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の表はとある携帯の料金プランです。
1か月に(分話したときの料金をy円とする。
①3つのプランのXとYの関係を式にすると?




②1か月に180分話したとき1ヶ月の 料金を安い順番にすると?

③Bプランの料金がAプランより安くなるのは1ヵ月に何分より多く話したとき?
※表は動画内参照
この動画を見る 

これなんの2乗か分かる?

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問を解答します
数字が大きくなるとなんの2乗か分からない
この動画を見る 

【中学数学】三角形の合同・相似の部分点の取り方~最後の悪あがき~

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形#高校入試過去問(数学)#大阪府公立高等学校#北海道公立高等学校
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角形の合同・相似の部分点の取り方についての説明動画です
この動画を見る 

【中1 数学】  1-①⑧ 文字の計算(乗法・除法)

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 文字の計算(乗法・除法)
次の計算をせよ
① $3x \times (-2) =$
② $-15 x \div 5 =$
③ $9x \div 5 =$
④ $12y \div (-\dfrac{3}{4}) =$
⑤ $(3x - 2) \times (- 5) =$
⑥ $4(- x + 2) =$
⑦ $(15x - 10) \div (- 5) =$
⑧ $(27x + 9) \div (\dfrac{3}{4}) =$
⑨ $\dfrac{(3x - 1)}{4} \times 8$
⑩ $\dfrac{(5x - 3)}{8} \times 6 =$
⑪ $5(2x - 3) - 3(3x - 1)=$
この動画を見る 

因数分解 A 中大横浜 2021

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2(x-1)-x+1$を因数分解せよ。

中央大学附属横浜高等学校
この動画を見る 
PAGE TOP