高等学校入学試験予想問題:開成高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:開成高等学校~全国入試問題解法

問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
単元: #数学(中学生)#開成高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.

$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.

【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.

辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.

(1)この立体の表面積を求めよ.

(2)この立体の体積を求めよ.

(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.

$ \boxed{2}$

図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.


①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.

(1)さいころを2回ふってゴールする確率を求めよ.

(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.

(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.

$ \boxed{3}$

$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.

1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.

2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.

このとき,$ x $と$ y $の値を求めよ.

開成高等学校予想問題
投稿日:2024.01.22

<関連動画>

【中1 数学】中1-31 方程式を解く まとめ編

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$10-(3x+4)=-x$
②$0.9-0.1x=0.3+0.7x$
③$20x-100=60+30x$
④$\displaystyle \frac{x+3}{4}-1=\displaystyle \frac{x-1}{6}$
⑤xについての方程式
$3x+2a=1-2(x+a)$の解が-3のときaの値はいくつ?
この動画を見る 

これなんなん?

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中3数学#三平方の定理#平面図形#角度と面積#図形の移動
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これなんなん?
※問題文は動画内参照
この動画を見る 

【数学】中2-4 いろいろな多項式の計算①

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$

【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
この動画を見る 

中1数学「四則の混じった文字式の表し方②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第14回四則の混じった文字式の表し方②~

例題 次の式を×、÷を使って表しなさい。

(1)$3xy$ (2)$-2(a^2)b$ (3)$\dfrac{5x}{6}$

(4)$\dfrac{x}{yz}$ (5)$2(a+b)-\dfrac{3}{a-b}$

(6)${2a + 3b}{5}$
この動画を見る 

三平方の定理 高校数学不要

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
三平方の定理に関して解説していきます.
この動画を見る 
PAGE TOP