大学入試問題#24 秋田大学(2020) 定積分 - 質問解決D.B.(データベース)

大学入試問題#24 秋田大学(2020) 定積分

問題文全文(内容文):
$\displaystyle \int_{e}^{e^2}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2020年秋田大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2020年秋田大学 入試問題
投稿日:2021.10.03

<関連動画>

大学入試問題#661「落ち着いて計算」 山梨大学工学部(2022) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{2}}^{\frac{3}{4}\pi} (\sqrt{ \sin^2\ x+1 }) \sin2x\ dx$

出典:2022年山梨大学 入試問題
この動画を見る 

大学入試問題#786「よく出題されている。」 慶應義塾大学商学部(2024) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \lt b \lt c$ かつ$\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{3}{c}=2$を満たす自然数の組$(a,b,c)$をすべて求めよ

出典:2024年慶應義塾大学商学部 入試問題
この動画を見る 

福田の数学〜円と直線が共有点をもつ条件は〜慶應義塾大学2023年商学部第1問(2)〜円と直線の位置関係

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

広島大 微分積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$C:f(x)=x^3-4x^2+5x$
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
この動画を見る 

2変数関数の値域 日大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0,y \gt 0$において$\dfrac{2x^2-4xy+7y^2}{x^2+y^2}$のとり得る範囲を求めよ.

日大過去問
この動画を見る 
PAGE TOP