問題文全文(内容文):
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式
$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$
が成り立つことを示せ。
大阪大過去問
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式
$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$
が成り立つことを示せ。
大阪大過去問
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式
$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$
が成り立つことを示せ。
大阪大過去問
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式
$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$
が成り立つことを示せ。
大阪大過去問
投稿日:2022.12.13