大学入試問題#766「基本中の基本」 藤田医科大学(2017) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#766「基本中の基本」 藤田医科大学(2017) #整数問題

問題文全文(内容文):
不定方程式
$5x+7y=2017$ を満たす自然数の組$(x,y)$の個数を求めよ。

出典:2017年藤田医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
不定方程式
$5x+7y=2017$ を満たす自然数の組$(x,y)$の個数を求めよ。

出典:2017年藤田医科大学 入試問題
投稿日:2024.03.16

<関連動画>

大学入試問題#826「尺の関係で、解法2つ紹介!」 #筑波大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \displaystyle \frac{1}{\tan^2x} dx$

出典:2019年筑波大学
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第2問〜数列の一般項の最小と部分和の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\left\{a_n\right\}$を$a_1=-15$および
$a_{n+1}=a_n+\frac{n}{5}-2  (n=1,2,3,\ldots)$
を満たす数列とする。
(1)$a_n$が最小となる自然数nを全て求めよ。
(2)$\left\{a_n\right\}$の一般項を求めよ。
(3)$\sum_{k=1}^na_k$が最小となる自然数nを全て求めよ。

2022北海道大学文系過去問
この動画を見る 

福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

次の条件によって定められる数列$\{ a_n\}$がある。

$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$

(1)正の整数$k,\ell$に対して

$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$

が成り立つことを示せ。

(2)正の整数$m$に対して

$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$

が成り立つことを示せ。

$2025$年大阪大学文系過去問題
この動画を見る 

【高校数学】東京大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分92日目~47都道府県制覇への道~【㉟東京】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東京大学 2024】
座標空間内に3点A(1,0,0),B(0,1,0),C(0,0,1)をとり、D を線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。
この動画を見る 

福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、

$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$

を満たす点$w$の軌跡を$C$とする。

次の問いに答えよ。

(1)$C$はどのような図形か。複素数平面上に図示せよ。

(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。

(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の

表す領域の共通部分の面積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 
PAGE TOP