福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。

2021慶應義塾大学薬学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。

2021慶應義塾大学薬学部過去問
投稿日:2021.07.30

<関連動画>

中山廉人の数学力を鈴木貫太郎がチェック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
鈴木貫太郎先生が、「指数対数」と「対数関数」の基本を解説します。

公式や定義を確認しましょう。
この動画を見る 

三重大2020指数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての実数$x$に対して$2^{3x}\geqq 3・2^x-1$が成り立つ$a$の範囲を求めよ.

2020三重大過去問
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(1)〜指数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$2^{1-3x} \geqq \left(\dfrac{1}{\sqrt2}\right)^x$を満たす

実数$x$の値の範囲は$\boxed{ア}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

【高校数学】 数Ⅱ-128 指数関数②・性質編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の数の大小を不等号を用いて表そう。

①$2^{°},2^{-5},2^3$

②$(\displaystyle \frac{1}{3})^{°},(\displaystyle \frac{1}{3})^{-5},(\displaystyle \frac{1}{3})^{3}$

③$^4\sqrt{ 8 },^6\sqrt{ 32 },^9\sqrt{ 128 }$

④$\sqrt{ \displaystyle \frac{1}{3} },^3\sqrt{ \displaystyle \frac{1}{9} },^4\sqrt{ \displaystyle \frac{1}{27} }$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。

$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。

(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。

2021共通テスト数学過去問
この動画を見る 
PAGE TOP