大学入試問題#601「これは落としたくないかも」 広島大学後期(2014) #定積分 - 質問解決D.B.(データベース)

大学入試問題#601「これは落としたくないかも」 広島大学後期(2014) #定積分

問題文全文(内容文):
$f(x)=x\ log\ x$のとき
$(\displaystyle \frac{1}{e} \leqq x \leqq )$
$\displaystyle \int_{0}^{e} f^{-1}(x) dx$を求めよ

出典:2014年広島大学後期 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:16 本編スタート
04:55 作成した解答①
05:06 作成した解答②

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x\ log\ x$のとき
$(\displaystyle \frac{1}{e} \leqq x \leqq )$
$\displaystyle \int_{0}^{e} f^{-1}(x) dx$を求めよ

出典:2014年広島大学後期 入試問題
投稿日:2023.07.29

<関連動画>

大学入試問題#552「解き方いろいろ」 岡山県立大学(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}} \displaystyle \frac{x^3}{\sqrt{ 1-x^2 }} dx$

出典:2023年岡山県立大学 入試問題
この動画を見る 

大学入試問題#63 京都大学(2011) 気合で置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}}(x+1)\sqrt{ 1-2x^2 }\ dx$を計算せよ。

出典:2011年京都大学 入試問題
この動画を見る 

【高校数学】毎日積分52日目 実践編③回転体シリーズ~軸からの最長距離と最短距離~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの関数$f(x)=e^{-x} \sin x(0\leqq x\leqq 2\pi)$と$g(x)=-e^{-x}(0\leqq x\leqq 2\pi)$について、次の問いに答えよ。
(1)$f(x)$が最小値をとるときの$x$の値を求めよ。
(2)$f(x)=g(x)$をみたす$x$の値を求めよ。
(3)曲線$C1:y=f(x),C2:y=g(x)$と$y$軸で囲まれる部分を$x$軸のまわり
に1回転してできる立体の体積$V$を求めよ。
この動画を見る 

#高専#ウォリス積分_15#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$

(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第7問〜空間ベクトルと回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
この動画を見る 
PAGE TOP