宮崎大 対数の基本 - 質問解決D.B.(データベース)

宮崎大 対数の基本

問題文全文(内容文):
$\dfrac{2^{148}+1}{17}$は何桁か?

宮崎大過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{2^{148}+1}{17}$は何桁か?

宮崎大過去問
投稿日:2021.10.30

<関連動画>

【高校数学】対数②~対数の性質のイメージと証明,ときどき例題~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の値を求めよ。

(1) log₁₀2+log₁₀5

(2) 4log₂$\sqrt{ 2 }$+$\displaystyle \frac{1}{2}$log₂3-log₂$\frac{ \sqrt{3} }{ 2 }$
この動画を見る 

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(5)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。

2021立教大学経済学部過去問
この動画を見る 

一橋大 漸化式&対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.

(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$

1998一橋大過去問
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(4)〜対数の大小比較

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)次の3つの数A, B, Cを小さい順に並べよ。
A=$\frac{1}{2}\log_2\frac{1}{2}$, B=$\frac{1}{3}\log_2\frac{1}{3}$, A=$\frac{1}{6}\log_2\frac{1}{6}$
この動画を見る 
PAGE TOP