【高校数学】数Ⅲ-2 複素数平面・共役な複素数② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-2 複素数平面・共役な複素数②

問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
投稿日:2017.03.13

<関連動画>

【数ⅢC】複素数平面の基本⑧円の方程式を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)$\vert z+2i\vert=3$
(2)$\vert z+3-2i\vert =1$
(3)$\vert z-i\vert=1$
この動画を見る 

福田の数学〜青山学院大学2025理工学部第2問〜虚数係数の2次方程式の解と正方形の頂点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$i$を虚数単位とする。

複素数$z$についての方程式

$z^2-4iz=4\sqrt3 i \ \cdots (*)$

の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、

$\alpha,\beta$が表す複素数平面上の点を

それぞれ$A,B$とする。

(1)方程式$(*)$は

$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$

と表せるので

$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。

(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。

また、線分$AB$を対角線とする正方形の

残りの$2$頂点を表す複素数は

$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と

$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、

$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$

を満たす点$w$の軌跡を$C$とする。

次の問いに答えよ。

(1)$C$はどのような図形か。複素数平面上に図示せよ。

(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。

(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の

表す領域の共通部分の面積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

数学「大学入試良問集」【16−1 複素数平面と解と係数の関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #複素数平面#複素数平面#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#数学(高校生)#数C#京都大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$c$を実数とする。$x$についての2次方程式
$x^2+(3-2c)x+c^2+5=0$が2つの解$\alpha,\ \beta$を持つとする。
複素平面上の3点$\alpha,\beta,c^2$が三角形の3頂点になり、その三角形の重心は$0$であるという。
$c$を求めよ。
この動画を見る 

東邦(医)正五角形の外接円と内接円の半径の比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
正五角形の外接円、内接円の半径をそれぞれR,rとする。
$\frac{r}{R}$の値を求めよ。
この動画を見る 
PAGE TOP