【高校数学】数Ⅲ-2 複素数平面・共役な複素数② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-2 複素数平面・共役な複素数②

問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$z$が,$2z-5\overline{z}=-9+14i$を満たすとき,
共役複素数の性質を利用して$z$を求めよ.
投稿日:2017.03.13

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

大学入試問題#52 防衛医科大学(2020) 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$z^3=8$の虚数解の1つを$\alpha$とする。
$\alpha^4+6\alpha^3+8\alpha^2+8\alpha$の値を求めよ。

出典:2020年防衛医科大学 入試問題
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$t$を実数とし、xの3次式f(x) を
$f(x) = x^3 + (1-2t)x^2+(4-2t)x+4$
により定める。以下の問いに答えよ。
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、$f(x) = 0$ が虚数の
解をもつようなtの範囲を求めよ。

実数tが (1) で求めた範囲にあるとき、方程式 $f(x) = 0$ の異なる2つの虚数解を
α, βとし、実数解をγとする。ただし、$α$の虚部は正、$β$の虚部は負とする。
以下、$α, β, γ$を複素数平面上の点とみなす。
(2) $α, β, γ$をtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点$α$
が描く図形を複素数平面上に図示せよ。

(3) 3点$α, β, γ$が一直線上にあるようなtの値を求めよ。

(4)3点$α, β, γ$が正三角形の頂点となるようなtの値を求めよ。

2022中央大学理工学部過去問
この動画を見る 

名古屋大学 z^6=64 の6つの解を求めよ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'05名古屋大学過去問題
$Z^6 = 64$
この動画を見る 

奈良県教員採用試験「基本問題で良問!!」 #複素数

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$|\cos\theta+i\sin\theta-3+i|$の最大値、最小値を求めよ

出典:奈良県教員採用試験
この動画を見る 
PAGE TOP