奈良県教員採用試験(数学:式変形) - 質問解決D.B.(データベース)

奈良県教員採用試験(数学:式変形)

問題文全文(内容文):
$x+y+z=2$ , $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2}$
のとき
$\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}$の値を求めよ。
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$x+y+z=2$ , $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2}$
のとき
$\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}$の値を求めよ。
投稿日:2020.12.09

<関連動画>

【数Ⅰ】【図形と計量】空間の基本2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺の長さが3の正四面体$\rm ABCD$において、辺$\rm BC,CD$を$1:2$に分ける点を、それぞれ$\rm P,Q$とする。このとき、次のものを求めよ。
(1)$\rm AP,AQ,PQ$の長さ (2)$\cos \angle \rm PAQ$の値 (3)$\rm \triangle APQ$の面積
この動画を見る 

奈良県立医大 長方形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ

出典:奈良県立医科大学 問題
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

平均は足して2で割るもの。? 近江(滋賀)

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A組、B組の2クラスでテストを行った。
35人クラスのA組の平均点がa点
40人クラスのB組の平均点がb点
2クラス全体の平均点をa,bで表せ。

近江高等学校
この動画を見る 
PAGE TOP