佐賀県立高校入試2021年「二次方程式」 - 質問解決D.B.(データベース)

佐賀県立高校入試2021年「二次方程式」

問題文全文(内容文):
佐賀県立高校入試2021年「二次方程式」
-----------------
三角形と長方形がある。
三角形は高さが底辺の長さの3倍であり、長方形は横の長さが縦の長さよりも2cm長い。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)
長方形の縦の長さが$3cm$のとき、長方形の面積を求めなさい。

(イ)
三角形の面積が$6cm^2$とき、三角形の底辺の長さを求めなさい。

(ウ)
三角形の底辺の長さと、長方形の縦の長さが等しいとき、三角形の面積が長方形の面積より$6cm^2$回大きくなった。
このとき、三角形の底辺の長さを求めなさい。
ただし、三角形の底辺の長さを$xcm$として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年「二次方程式」
-----------------
三角形と長方形がある。
三角形は高さが底辺の長さの3倍であり、長方形は横の長さが縦の長さよりも2cm長い。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)
長方形の縦の長さが$3cm$のとき、長方形の面積を求めなさい。

(イ)
三角形の面積が$6cm^2$とき、三角形の底辺の長さを求めなさい。

(ウ)
三角形の底辺の長さと、長方形の縦の長さが等しいとき、三角形の面積が長方形の面積より$6cm^2$回大きくなった。
このとき、三角形の底辺の長さを求めなさい。
ただし、三角形の底辺の長さを$xcm$として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
投稿日:2023.02.11

<関連動画>

【一歩先行く3分間!】二次方程式:東大寺学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#2次方程式#高校入試過去問(数学)#数学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東大寺学園高等学校

aの値とpの値を求めよ。

【$x$の二次方程式】
$\sqrt{ 5x^2 }+ax+4\sqrt{ 5 }=0$
の解の1つが
$\sqrt{ 15x }+ax+2\sqrt{ 3 }=0$
の解である。

もう一つの解を pとする。
この動画を見る 

【数学】中3-22 ルートと展開のコラボ

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
この動画を見る 

【中学数学】2次方程式:図形に関する問題⑥ 動点の問題 点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
教材: #新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=18cm、BC=12cm、∠B=90°の△ABCがある。点Pは辺AB上を毎秒3cmの速さでAからBまで動き、点Qは辺BC上を毎秒2cmの速さでBからCまで動く。点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。
この動画を見る 

ルートのかけ算はこうする?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ルートのかけ算解き方、解説動画です
この動画を見る 

2次方程式のこれ解ける?

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
aを定数とする。xの2次方程式
$3(x+a)^2 = (2a^2+1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値を全て求めよ。(灘高校 2024)
この動画を見る 
PAGE TOP