20年5月数学検定1級1次試験(四面体の体積) - 質問解決D.B.(データベース)

20年5月数学検定1級1次試験(四面体の体積)

問題文全文(内容文):
3⃣4点 A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)とする。
四面体ABCDの体積Vを求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#空間ベクトル#空間ベクトル#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣4点 A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)とする。
四面体ABCDの体積Vを求めよ。
投稿日:2020.06.11

<関連動画>

【数B】空間ベクトル:球面の方程式!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
この動画を見る 

【数B】空間ベクトル:東京理科大 座標空間の図形問題

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題071〜東京医科歯科大学2017年度医学部第2問〜空間における球面と軌跡の問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。

2017東京医科歯科大学医学部過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第2問〜球面と平面の交わりと切り取られる弦の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ Oを原点とする座標空間において、3点A(4,2,1), B(1,-4,1), C(2,2,-1)を通る平面を$\alpha$とおく。また、球面Sは半径が9で、Sと$\alpha$の交わりはAを中心としBを通る円であるとする。ただし、Sの中心Pのz座標は正とする。
(1)線分APの長さを求めよ。
(2)Pの座標を求めよ。
(3)Sと直線OCは2点で交わる。その2点間の距離を求めよ。

2023北海道大学理系過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP