大学入試問題#700「章末問題」 早稲田大学社会学部(2022)整式 - 質問解決D.B.(データベース)

大学入試問題#700「章末問題」 早稲田大学社会学部(2022)整式

問題文全文(内容文):
整式$P(x)$を
$x-1$で割ると1余り、
$(x+1)^2$で割ると$3x+2$余る。
このとき、$P(x)$を$(x-1)(x+1)^2$で割ったときの余りを求めよ

出典:2022年早稲田大学社会学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
整式$P(x)$を
$x-1$で割ると1余り、
$(x+1)^2$で割ると$3x+2$余る。
このとき、$P(x)$を$(x-1)(x+1)^2$で割ったときの余りを求めよ

出典:2022年早稲田大学社会学部 入試問題
投稿日:2024.01.10

<関連動画>

大学入試問題#682「もはや、言うまでもない」 富山大学(2023) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{1+2\sin\ x}{1+\sin\ x+\cos\ x} dx$

出典:2023年富山大学 入試問題
この動画を見る 

慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか

(1)
$x+y+z=24$

(2)
$x+y+z=24$
$x \leqq y \leqq z$

(3)
$x+2y+3z=24$

出典:2009年慶應義塾 過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 

見ただけで何でくくれるかは、わかる。 大学入試の因数分解 秋田大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$

秋田大学
この動画を見る 

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
この動画を見る 
PAGE TOP