福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散

問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
単元: #データの分析#データの分析#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
投稿日:2024.04.07

<関連動画>

【短時間でマスター!!】四分位数・四分位範囲・四分位偏差の求め方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
四分位数・四分位範囲・四分位偏差の求め方を解説します。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
$n$人のクラス(ただし$n \gt 1$)で英語と理科のテストを実施する。ただしどちらの科目にも同順位の者はいないとする。出席番号$i(i=1,2,\ldots,n)$の生徒について、その英語の順位$x$と理科の順位$y$の組を$(x_i,y_i)$で表す。
(1)変量$x$の平均値$\bar{ x }$と分散$s_x^2$をそれぞれ求めると$\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ }$である。
(2)変量$x,y$の共分散$s_{xy}$とする。クラスの人数$n$が奇数の2倍であるとき、$s_{xy}\neq 0$であることを示しなさい。
(3)$i=1,2,\ldots,n$に対して$d_i=x_i-y_i$とおく。変量$x,y$の相関係数を$r$とするとき、$r$は$n$と$d_1,d_2,\ldots,d_n$を用いて$r=1-\dfrac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ }$と表される。
(4)$x_i$と$y_i$の間に$y_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)$の関係があるとき$r$は最大値$\boxed{\ \ (か)\ \ }$をとり$y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)$の関係があるとき$r$は最小値$\boxed{\ \ (く)\ \ }$をとる。

2021慶應義塾大学医学部過去問
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第1問(3)〜平均と分散

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次のデータは、ある7人制ラグビーチームの7人の選手の身長を調べたものである。
$181,\,185,\,184,\,176,\,172,\,x,\,y$
このデータの平均が$177$、分散が$40$のとき、$x < y$ とすると$x=\fbox{シ},\,y=\fbox{ス}$である。
この動画を見る 

【算数・中学数学・数Ⅰ】算数でも数学でも出てくる「平均値と中央値」の違い~年収のお話もあるよ~ ※2020年度学習指導要領改訂で中央値は算数で習うようになりました。

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#数Ⅰ#資料の活用#データの分析#データの分析#その他#その他#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均と中央値って何が違うの??日本の平均年収441万円ってどうなのよ??
データを読み解く力は、今後とても大切です!!必見。
この動画を見る 

平均は足して2で割るもの。? 近江(滋賀)

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A組、B組の2クラスでテストを行った。
35人クラスのA組の平均点がa点
40人クラスのB組の平均点がb点
2クラス全体の平均点をa,bで表せ。

近江高等学校
この動画を見る 
PAGE TOP