数学オリンピック 予選の簡単な問題 - 質問解決D.B.(データベース)

数学オリンピック 予選の簡単な問題

問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数

出典:数学オリンピック 予選問題
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数

出典:数学オリンピック 予選問題
投稿日:2019.08.08

<関連動画>

【数A】図形の性質:チェバの定理とメネラウスの定理ってこういうことだったの? ただの暗記だと思ってたけど全然違った・・・

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
チェバメネラウスの定理の解説動画です。
この動画を見る 

下4桁!でも簡単

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{164}$の下4桁を求めよ.
この動画を見る 

慶應(薬)n進数の剰余

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$Z$はn進法で表すと$k+1$桁であり,$n^k$の位の数が$4$
$n^i(1\leqq i \leqq k-1)$の位の数が$0$
$n^0$の位の数が1となる.$(n\geqq 3,K\geqq 2)$
(1)$k=3$のとき,$Z$を$n+1$で割った余りは?
(2)$Z$が$n=1$で割り切れるときのnの値をすべて求めよ.

慶應(薬)過去問
この動画を見る 

2023高校入試数学解説98問目 整数問題 秋田県

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは100より小さい素数
$\frac{231}{n+2}$が整数となるnをすべて求めよ
2023秋田県
この動画を見る 

仙台育英 正四面体の内接球の半径

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
内接球の半径=?
*図は動画内参照

仙台育英学園高等学校
この動画を見る 
PAGE TOP