福田の数学〜慶應義塾大学看護医療学部2025第2問(1)〜極形式とド・モアブルの定理 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学看護医療学部2025第2問(1)〜極形式とド・モアブルの定理

問題文全文(内容文):

$\boxed{2}$

(1)$x^3-3x^2+6x-4=0$の解で

虚部が正であるものを$\omega$としたとき、

$\omega$の絶対値は$\vert \omega \vert=\boxed{キ}$であり、

偏角$\theta$は$\theta=\boxed{ク}$である。

ただし、$0\leqq \theta \lt 2\pi$とする。

また、$\omega^{10} =\boxed{ケ}+\boxed{コ}i$である。

ただし、$\boxed{ケ},\boxed{コ}$は実数とする。

$2025$年慶應義塾大学看護医療学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(1)$x^3-3x^2+6x-4=0$の解で

虚部が正であるものを$\omega$としたとき、

$\omega$の絶対値は$\vert \omega \vert=\boxed{キ}$であり、

偏角$\theta$は$\theta=\boxed{ク}$である。

ただし、$0\leqq \theta \lt 2\pi$とする。

また、$\omega^{10} =\boxed{ケ}+\boxed{コ}i$である。

ただし、$\boxed{ケ},\boxed{コ}$は実数とする。

$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.04.29

<関連動画>

大学入試問題#128 東京理科大学(2020) 定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^5x\ dx$を計算せよ。

出典:2020年東京理科大学 入試問題
この動画を見る 

福田のおもしろ数学517〜2つの楕円の共通部分の面積

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2$つの楕円(内部を含む)

$\dfrac{x^2}{3}+y^2\leqq 1,x^2+\dfrac{y^2}{3} \leqq 1$

の共通部分の面積を求めよ。
    
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

18愛知県教員採用試験(数学:6番 指数関数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
6⃣$y=-(9^x+9^{-x})+2a(3^x+3^{-x})+1$
(1)$t=3^x+3^{-x}$の最小値
(2)yの最大値が5のときaの値
この動画を見る 

灘高校 ガウス記号

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[x]$はxを越えない最大の整数である.
$[x]+[2(x-[x])]=5$を満たす$x$の最小値を求めよ.

2016灘高校過去問
この動画を見る 
PAGE TOP