19奈良県教員採用試験(数学:高校1番 微分) - 質問解決D.B.(データベース)

19奈良県教員採用試験(数学:高校1番 微分)

問題文全文(内容文):
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
単元: #微分とその応用#微分法#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
投稿日:2020.08.05

<関連動画>

練習問題47 東京理科大学 部分積分 数検準1級 教員採用試験

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#東京理科大学#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{(x+1)^2}\ dx$を計算せよ。

出典:東京理科大学
この動画を見る 

13愛知県教員採用試験(数学:6番 対数の性質)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\log_{10} 2=0.3010$
$\log_{10} 3=0.4771$

(1)$3^{25}$は何桁
(2)$3^{25}$の最高位の数
(3)$3^{25}$の1の位の数
この動画を見る 

14和歌山県教員採用試験(数学:3番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
(i)$f`(x):$連続
(ii)$f(x)=\displaystyle \int_{1}^{x} (x-t)f`(t)dt+3x+1$
(iii)(ii)をみたす$f(x)$を求めよ.
この動画を見る 

09大阪府教員採用試験(数学:1番 微分の定義と微分方程式)

アイキャッチ画像
単元: #微分とその応用#微分法#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣f(x+y)=f(x)f(y)
f'(0)=C(≠0)
(1)f(0)
(2)${}^∀x \in \mathbb{R} , f(x) > 0$
(3)${}^∀x \in \mathbb{R} , f(x)$は微分可能
(4)f(x)をCを用いて表せ
この動画を見る 

04京都府教員採用試験(数学:6番 ネピアの数の性質)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$n\in IN$,$\displaystyle \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right)^n=e$
を満たすとき,
$x\in IR$,$\displaystyle \lim_{x\to\infty}\left(1+\dfrac{1}{x}\right)^n=e$
を示せ.
この動画を見る 
PAGE TOP