図形と計量 文字で三角比を表す【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 文字で三角比を表す【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) BC (2) AC (3) AD (4) CD (5) BD
チャプター:

0:00 オープニング
0:07 解説開始!まずは問題整理
1:30 (1)BCの長さを求める
2:23 (2)ACの長さを求める
3:11 θと90°は●におく!
5:09 既に求めた長さを図に書く!
5:24 (3)ADの長さを求める
6:31 (4)CDの長さを求める
7:24 (5)BDの長さを求める

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) BC (2) AC (3) AD (4) CD (5) BD
投稿日:2023.04.29

<関連動画>

【数Ⅰ】【集合と論証】対偶の使い方 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。

(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。

【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
この動画を見る 

数学「大学入試良問集」【6−3 内接四角形】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四角形$ABCD$が、半径$\displaystyle \frac{65}{8}$の円に内接している。
この四角形の週の長さが$44$で、辺$BC$と辺$CD$の長さがいずれも$13$であるとき、残りの2辺$AB$と$DA$の長さを求めよ。
この動画を見る 

絶対値

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{|a|} - \frac{|b|}{b} =?$
この動画を見る 

福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

平方根 津田塾大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nで$\sqrt{n^2-n+20}$の整数部分がnとなるのは全部でいくつ?(n:自然数)

津田塾大学
この動画を見る 
PAGE TOP