福田のわかった数学〜高校3年生理系026〜極限(26)関数の極限、三角関数の極限(6) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系026〜極限(26)関数の極限、三角関数の極限(6)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(6)\\
\lim_{x \to \frac{\pi}{2}}\frac{1-\sin x}{(2x-\pi)^2} を求めよ。
\end{eqnarray}
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(6)\\
\lim_{x \to \frac{\pi}{2}}\frac{1-\sin x}{(2x-\pi)^2} を求めよ。
\end{eqnarray}
投稿日:2021.06.01

<関連動画>

【数Ⅲ】極限:ロピタルを使って極限を簡単に求める

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\dfrac{1-\cos 3x}{x^2}$を求めよ
この動画を見る 

極限の基本問題 立教大

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
$\displaystyle\lim_{x \to 0} \frac{\sin(1-\cos x)}{x^2}$
この動画を見る 

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP