福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小

問題文全文(内容文):
(3)正の数の組$(x,\ y)$が
$\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}$
を満たすとき$z=xy$は$(x,\ y)=(a,\ b)$で最小値をとる。ここで、
$\log_{10}a=\frac{\boxed{ヤ}}{\boxed{ユ}},\ \log_{10}b=\frac{\boxed{ヨ}}{\boxed{ワ}}$
である。

2022上智大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)正の数の組$(x,\ y)$が
$\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}$
を満たすとき$z=xy$は$(x,\ y)=(a,\ b)$で最小値をとる。ここで、
$\log_{10}a=\frac{\boxed{ヤ}}{\boxed{ユ}},\ \log_{10}b=\frac{\boxed{ヨ}}{\boxed{ワ}}$
である。

2022上智大学文系過去問
投稿日:2022.10.08

<関連動画>

【高校数学】数Ⅲ-102 指数関数の導関数②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=e^x \log x$

②$y=\dfrac{e^x}{e^x+e^{-x}}$

③$y=e^x \cos x$

④$y=x^{\sin x} (x \gt 0)$
この動画を見る 

因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$9x^2+4168x+2^{15}$
この動画を見る 

結局0の0乗っていくつになるの?

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0の0乗は何になるか
この動画を見る 

愛媛大 三次関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=ax^3+3a^2x^2+1(a \neq 0)$
$2 \leqq x \leqq 4$における最小値が$f(2)$になるような$a$の範囲を求めよ


出典:1998年愛媛大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-139 指数関数・対数関数の最大値・最小値①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。

②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
この動画を見る 
PAGE TOP