16東京都教員採用試験(数学:1-5番 行列) - 質問解決D.B.(データベース)

16東京都教員採用試験(数学:1-5番 行列)

問題文全文(内容文):
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$

$A^{-1}$が存在しないとき、aの値を求めよ。
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$

$A^{-1}$が存在しないとき、aの値を求めよ。
投稿日:2020.07.26

<関連動画>

11和歌山県教員採用試験(数学:4番 微分と微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f(x)$:微分可能
任意の実数$x,y$に対して
$f(x+y)=f(x),f(y),f`(0)=2$

(1)$f(0)$を求めよ.
(2)$f(x)$を求めよ.
この動画を見る 

15和歌山県教員採用試験(数学:5番 行列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$

$A=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$

$A^2-3A+2E=\theta$をみたすとき,
$(a+d,ad-bc)$を全て求めよ.
この動画を見る 

09愛知県教員採用試験(数学:2番 微積)

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣ $0 \leqq x \leqq \frac{1}{\sqrt 3}$
$f(x)=\int_x^{\sqrt 3 x} \sqrt{1-t^2} dt$
(1)f(x)の最大値
(2)$\displaystyle \lim_{ x \to \infty } \frac{f(x)}{x}$
この動画を見る 

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

08神奈川県教員採用試験(数学:10番 式変形)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$ $x,y >0$
$\sqrt x + \sqrt y \leqq k \sqrt{3x+y}$
をみたすkの最小値を求めよ
この動画を見る 
PAGE TOP