【「学ぶ」は「真似する」ところから】2元2次連立方程式⑤:中学からの連立方程式~全国入試問題解法 - 質問解決D.B.(データベース)

【「学ぶ」は「真似する」ところから】2元2次連立方程式⑤:中学からの連立方程式~全国入試問題解法

問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+y=1 \\
x^2+y^2=1
\end{array}
\right.
\end{eqnarray}$
を解け.
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+y=1 \\
x^2+y^2=1
\end{array}
\right.
\end{eqnarray}$
を解け.
投稿日:2023.04.29

<関連動画>

【高校受験対策】数学-確率5

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の図のような、1辺が2の正方形$ABCD$があり、頂点$D$に点$P$、頂点$A$に
点$Q$がある。
赤と白の2個のさいころを同時に1回投げて、
赤いさいころの出た目の数だけ$P$を左回りに頂点から頂点へ移動させ、
白いさいころの出た目の数だけ$Q$を左回りに頂点から頂点へ移動させる。
たとえば、赤いさいころの出た目が1、白いさいころの出た目が2のときは、
$P$を$D→A$、$Q$を$A→B→C$と移動させる。
このとき、次の問に答えなさい。

①赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の位置が頂点$B$で、$Q$の位置が頂点$D$になる確率を求めなさい。

②赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$△APQ$の面積が2になる確率を求めなさい。

③表1のように、各頂点の点数を決め、$P、Q$の移動後の位置に応じてそれぞれ点数を与える。
赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の点数が$Q$の点数より高くなる確率を求めなさい。

図は動画内参照
この動画を見る 

見える? 青雲 2022入試問題解説6問目

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#角度と面積#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle DME =?$
*図は動画内参照

2022青雲高等学校
この動画を見る 

高校入試だけど確率漸化式!?西大和学園2022入試問題解説100問解説!!58問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#数列#漸化式#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照

2022西大和学園高等学校
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

ブーメランの角 1対2対3

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a =?$
*図は動画内参照

2021芝浦工業大学柏高等学校
この動画を見る 
PAGE TOP