【算数練習】93(”大人”は頭の体操) - 質問解決D.B.(データベース)

【算数練習】93(”大人”は頭の体操)

問題文全文(内容文):
黄色の四角形の面積は?
※図は動画内参照
単元: #算数(中学受験)#平面図形#角度と面積#相似と相似を利用した問題#図形の移動#平面図形その他
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
黄色の四角形の面積は?
※図は動画内参照
投稿日:2024.07.27

<関連動画>

2024年女子学院中算数大問①(1)~(5)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#文章題#平均算・過不足算・差集め算・消去算#平面図形#角度と面積#相似と相似を利用した問題#女子学院中学
指導講師: 重吉
問題文全文(内容文):
※図は動画内参照
(1)
$\Box$に当てはまる数を入れなさい。
$18.7+\{ 13.4\times(\dfrac{1}{20}+\Box)-2\dfrac{1}{3} \}\div2\dfrac{6}{11}=20.24$

(2)
図のように、円周を10等分する点を取りました。点Oは円の中心、三角形ABCは正三角形です。
角アは$\Box$度、角イは$\Box$度、角ウは$\Box$度

(3)
図のように、長方形の紙を対角線を折り目としておりました。
斜線部分の面積は$\Box$㎠です。

(4)
図のように、棒を使って正三角形と正方形を作ります。
➀100個目の正方形を作り終えたとき、使った棒は$\Box$本です。
②棒が1000本ある時、正三角形は$\Box$個、正方形は$\Box$個まで作ることができます。

(5)
クラスの生徒に消しゴムを配ります。全員に10個ずつ配ると32個足りないので、先生と勝敗がつくまでじゃんけんをして、勝った人には11個、負けた人には7個配ることにしました。勝った人は負けた人よりも5人少なかったので、消しゴムは9個あまりました。
クラスの人数は$\Box$人、消しゴムは全部で$\Box$個です。
この動画を見る 

【テスト対策・中1】2章-2

アイキャッチ画像
単元: #文章題#文章題その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数量の関係を,等式か不等式に表しなさい.

①あめを1人7個ずつ$a$人に配ると,60個ではたりない.

②1000円で,$x$円の品物を3個と$y$円の品物を1個買うことができた.

③兄は0円,弟は$b$円持っていたが,兄が弟に$C$円渡したので,
2人の所持金が同じになった.

④底辺の長さが$6cm$,高さが$xcm$の三角形の面積は$ycm^2$以下である。
この動画を見る 

【受験算数】和と差に関する問題:甲乙が射的をし、的中時は甲4点乙5点の得点、的中しないと甲2点乙3点の失点となる。甲乙が20発ずつ発射し、で合計28発が的中、甲が乙より20点多い。甲の的中した数は?

アイキャッチ画像
単元: #算数(中学受験)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
指導講師: 理数個別チャンネル
問題文全文(内容文):
甲乙2人が射的をしました。的中した時は、1発につき甲は4点、乙は5点の得点になりますが、的中しないと1発につき甲は2点、乙は3点の失点となります。いま、甲乙が20発ずつ発射して2人で合計28発が的中し、得点は甲が乙より20点多くなりました。甲の的中した数は何発ですか?
この動画を見る 

2025年浅野中入試算数大問① 中学受験指導歴20年以上プロ塾講師のじっくり解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#浅野中学
指導講師: 重吉
問題文全文(内容文):
大問1
(1)動画内参照

(2) 5人の生徒A、B、C、D、Eの身長を調べたところ、Aの身長がもっとも低く、 A、B、C、D、Eの順に高くなっていました。また、DとEの身長の平均はCと Eの身長の平均より5cm高く、CとDの身長の平均は154cmでした。このとき、 Cの身長は イcmです。
また、5人の生徒から2人を選び、2人の身長の平均を求めると、平均が151cm となる組は2組ありました。5人の生徒A、B、C、D、Eの身長の平均は ウcmです。

(3) 西暦の下2桁、月を2桁、日にちを2桁とする6個の数字を順に組み合わせて6 桁の数を作ります。たとえば「西暦2025年2月3日」は「250203」と表されます。 西暦2025年1月1日から西暦2025年12月31日までの365個の6桁の数を考えます。ただし、西暦2025年はうるう年ではありません。
365個の6桁の数の各位の数字の積を考えます。たとえば、「250203」であれば [2 ×5 *×0 *×2 × 0 × 3 = 0]になります。もっとも大きな積は エ であり、積が0となる6桁の数は全部で オ個あります。

(4) 【図1】のような平行四辺形ABCDを、直線ACを軸として1回転させてできる立体の体積はカ cm²、表面積はキ cm²になります。
ただし、円周率は3.14とし、(円すいの体積)=(底面積)×(高さ)×1/3で求められます。
※図は動画内参照

(5) 兄と弟が、2人でいっしょに庭の掃除を始めて、休まずに掃除をし続ければ2時間30分で終わる予定でした。実際には弟が掃除を始め、兄が寝坊して20分遅れて掃除を始めたので、予定より14分長くかかりました。
兄と弟が1時間にする仕事の量の比をもっとも簡単な整数の比で答えるとク : ケです。
もし、2人がいっしょに掃除を始め、兄は「30分掃除をすると10分休むこと」 を繰り返し、弟は休まずに掃除をし続けた場合、掃除が終わるまでコ時間サ分かかります。
この動画を見る 

2021 京都府 面積比 B 解き方色々

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
四角形CGEH:平行四辺形ABCD=?
*図は動画内参照
2021京都府
この動画を見る 
PAGE TOP