【高校受験対策/数学】死守-96 - 質問解決D.B.(データベース)

【高校受験対策/数学】死守-96

問題文全文(内容文):
高校受験対策・死守96

①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。

⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。

⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96

①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。

⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。

⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
投稿日:2022.01.06

<関連動画>

【考え方は大切、いろんな意味で】文字式:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a=\dfrac{1}{\sqrt3+1}$
$ b=\dfrac{1}{\sqrt3-1}$のとき,$ a^3+a^2b+ab^2+b^3=\Box $である.

大阪星光高校過去問
この動画を見る 

2024年岩手県のラスボス 四面体の体積

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#空間図形#相似な図形#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
四面体ABCDの体積=?
この動画を見る 

四角形の面積 (基本)天理

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#角度と面積#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDの面積は?
*図は動画内参照
天理高等学校
この動画を見る 

【中学数学】座標上の三角形の面積の演習問題~裏技の復習~

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内赤色の三角形の面積を求めよ。
この動画を見る 

【高校受験対策】数学-図形26

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。

①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。

②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
この動画を見る 
PAGE TOP