東京医科歯科大 複素数の入った2次方程式 - 質問解決D.B.(データベース)

東京医科歯科大 複素数の入った2次方程式

問題文全文(内容文):
$x^2+dx+1+2i=0$が実数解をもつような複素数$\alpha$の絶対値の最小値を求めよ

出典:東京医科歯科大学 過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+dx+1+2i=0$が実数解をもつような複素数$\alpha$の絶対値の最小値を求めよ

出典:東京医科歯科大学 過去問
投稿日:2019.05.13

<関連動画>

福田の数学〜九州大学2023年理系第1問〜複素数平面上の三角形の形状

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。

2023九州大学理系過去問
この動画を見る 

複素数平面の基本①複素数平面の基本的な考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本的な考え方
この動画を見る 

ド・モアブルの定理を用いてオイラーの公式を導く

アイキャッチ画像
単元: #複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
この動画を見る 

10次方程式の解

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{x^{11}-1}{x-1}=0$の解の1つをαとする.
$(1-α)(1-α^2)(1-α^3)\cdots(1-α^{10})$の値を求めよ.
この動画を見る 

三重大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$の2つの解を$\alpha, \beta$とする。

(1)
$\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\beta}$の値


(2)
$\alpha^{27},\beta^{27}$の値


(3)
$\alpha^n+\beta^n$の値

出典:三重大学 過去問
この動画を見る 
PAGE TOP