図形と計量 正弦定理と余弦定理の応用、図形を利用して有名角以外を求める【烈's study!がていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 正弦定理と余弦定理の応用、図形を利用して有名角以外を求める【烈's study!がていねいに解説】

問題文全文(内容文):
図を利用して、$\sin105°$と$\cos105°$の値を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:11 アプローチについて
1:06 解説(cos105°)
3:36 解説(sin105°)
5:15 15°、75°などの値
5:25 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
図を利用して、$\sin105°$と$\cos105°$の値を求めよ。
投稿日:2023.04.20

<関連動画>

福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
この動画を見る 

大学入試問題#816「ほぼ直感通り!」 #東京医科大学(2011)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
すべての正の数$x,y$に対して、不等式
$\displaystyle \frac{K}{x+y} \leq \displaystyle \frac{1}{x}+\displaystyle \frac{49}{y}$
が成り立つような定数$K$の最大値を求めよ。

出典:2011年東京医科大学
この動画を見る 

【中学から分かる!】正弦定理(2):三角比 特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\triangle ABC$において,$a \sin A=b \sin B=c \sin C$ならばどんな三角形か.
この動画を見る 

中学生が解くには難しい 平方根の計算 青山学院

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\frac{1}{2}(a^2 - \frac{1}{a^2})$
$\sqrt{1+x^2}$をaを用いて表せ。(a>0)

青山学院高等部
この動画を見る 

ケンブリッジ大学の入試問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{3-2\sqrt 2} =$
a. $\sqrt 3 -1$
b. $\sqrt 2 -1$
c. $\sqrt 3 -\sqrt 2$

University of Cambridge
この動画を見る 
PAGE TOP