図形と計量 正弦定理と余弦定理の応用、図形を利用して有名角以外を求める【烈's study!がていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 正弦定理と余弦定理の応用、図形を利用して有名角以外を求める【烈's study!がていねいに解説】

問題文全文(内容文):
図を利用して、$\sin105°$と$\cos105°$の値を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:11 アプローチについて
1:06 解説(cos105°)
3:36 解説(sin105°)
5:15 15°、75°などの値
5:25 エンディング

単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
図を利用して、$\sin105°$と$\cos105°$の値を求めよ。
投稿日:2023.04.20

<関連動画>

【高校数学】2次関数の平行移動例題~基礎問題3選~ 2-2.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか

-----------------

2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ

-----------------

3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
この動画を見る 

鳥取大 ただの因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3-5x^2-5x+4$を因数分解しなさい

鳥取大過去問
この動画を見る 

【ひらめきに頼らず…!】整数:灘高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \color{orange}{x^2+x-n+1=0}$が整数解をもつような$ \color{red}{整数n}$のうち
$ \color{red}{n-2023の絶対値}$が最も小さいものは$ \Box $である.

$ \Box $を解け.

灘高校過去問
この動画を見る 

データの分析 データの中に誤りがあった場合【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある高校で、エコ活動としてペットボトルのキャップを集めている。次のデータは、1か月ごとに集まったキャップの重量を半年間記録したものである。
3.2 1.2 2.3 2.0 2.7 2.4 (単位はkg)
(1)中央値と平均値を求めよ。
(2)上記の6個のうち1個が誤りであることが分かった。正しい数値に基づく中央値と平均値は、それぞれ2.55kgと2.4kgであるという。誤っている数値を選び、正しい数値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xの関数が印刷されているカード25枚が1つの袋に入っている。
その内訳は、11枚に$1-3x$、9枚に$1-2x$、4枚に$1-2x+2x^2$、1枚に$1-3x+5x^2$である。
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを
100回繰り返したところ、記録の内訳は$1-3x$が46回、$1-2x$が35回、$1-2x+2x^2$が15回、
$1-3x+5x^2$が4回であった。
(1)記録された関数の実数xにおける値を$a_1,a_2,\ldots,a_{100}$とおく。
$a_1,a_2,\ldots,a_{100}$の平均値は、xの値を定めるとそれに対応して値が定まるので、
xの関数である。この関数は$x=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$のとき最小となり、その値は$-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}$である。
(2)記録された関数の$x=0$から$x=1$までの定積分を$b_1,b_2,\ldots,b_{100}$とおく。
$b_1,b_2,\ldots,b_{100}$の平均値は$-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
分散は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
また、記録された関数の$x=1$における値を$c_1,c_2,\ldots,c_{100}$とおくとき、
100個のデータの組$(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})$の共分散は$\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている
関数の$x=1$における値が負である条件の下で、その関数の0から1までの定積分
が負である条件つき確率は$\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP