式の値 - 質問解決D.B.(データベース)

式の値

問題文全文(内容文):
$x^2+2x+3=0$のとき,$\dfrac{x^3}{x^6-11x^3+27}$の値を求めよ.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+2x+3=0$のとき,$\dfrac{x^3}{x^6-11x^3+27}$の値を求めよ.
投稿日:2022.12.16

<関連動画>

図形的イメージ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(sinx)' = cosx
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問前編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ$\gt 0$の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、$\fbox{ア}$で表される概形となり、その面積は$\fbox{イ}$である。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:$\fbox{ウ}$に内分する点である。点 Pの位置に依らず、線分の長さについて$\fbox{エ}×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形は$\fbox{オ}$であり、面積は$\frac {\sqrt {{\fbox{カ}}}}{\fbox{キ}}\pi$である。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は$/fbox{ク}$が描く曲線である。
$\fbox{ク}$の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:$\sqrt{2}$に内分する点
⑥線分QRを$\sqrt{2}$:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\frac{\fbox{ケ}}{\fbox{コ}}\pi$である。また$\angle PQR$の面積は、線分 PQを直径とする円の面積の$\frac{\fbox{サ}}{\pi}$倍である。よって、立体$V$の体積は$\frac{\fbox{シ}}{\fbox{ス}}$である。
( 2 ) $z \geqq 0$の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線$L$を考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線$L$を表す式は
$y=0,z=\fbox{セソ}x^2+\fbox{タ}$(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積は$\frac{\fbox{チ}}{\fbox{ツ}}$である。
点 P が点 A から点 B まで移動するとき、放物線$L$と線分 PQ で囲まれる図形が通過してできる立体の体積は$\frac{\fbox{テト}}{\fbox{ナ}}$である。

2023杏林大学過去問
この動画を見る 

解いて代入すれば出るけどね‥‥

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-22x+111=0$のとき,
$(x-8)^2-\dfrac{1}{(x-8)^2}$の値を求めよ.
この動画を見る 

バサバサ消えるやつ 栄東高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{1+\sqrt 2} + \frac{1}{\sqrt 2+\sqrt 3} + \frac{1}{\sqrt 3+\sqrt 4} +
\cdots +\frac{1}{\sqrt {20}+\sqrt {21}}=?$

栄東高等学校
この動画を見る 

青山学院大 放物線の中の四角形

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#図形の性質#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^2+4x$
原点$O,A(4,0),P(p,f_{(p)}),Q(q,f_{(q)})$ $(0\lt p\lt q\lt 4)$
四角形$OAQP$の面積の最大値を求めよ.

青山学院大過去問
この動画を見る 
PAGE TOP