横浜市立(医)漸化式 - 質問解決D.B.(データベース)

横浜市立(医)漸化式

問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.

横浜市立(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.

横浜市立(医)過去問
投稿日:2020.04.02

<関連動画>

レピュニット数の問題

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{1111・・・・・・・11}^{3^n桁}$は$3^n$で割り切れることを示せ.
この動画を見る 

【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第5問〜定積分で定義された数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a_n$=$\displaystyle\frac{1}{n!}\int_1^e(\log x)^ndx$ ($n$=1,2,3,...)とおく。
(1)$a_1$を求めよ。
(2)不等式0≦$a_n$≦$\frac{e-1}{n!}$ が成り立つことを示せ。
(3)$n$≧2のとき、$a_n$=$\displaystyle\frac{e}{n!}$-$a_{n-1}$ であることを示せ。
(4)$\displaystyle\lim_{n \to \infty}\sum_{k=2}^n\frac{(-1)^k}{k!}$ を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第5問〜部分和を使った漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が
$S_n$=$(-1)^n$$a_n$-$\displaystyle\frac{1}{2^n}$ ($n$=1,2,3,...)
で表されるとする。$n$が偶数であるとき、
$a_n$=$\displaystyle\frac{\boxed{タ}}{\boxed{チ}}^n$
である。また、$S_1$+$S_2$+...+$S_{50}$の値は
$\frac{\boxed{ツ}}{\boxed{テ}・\boxed{ト}^{50}}$+$\frac{\boxed{ナ}}{\boxed{ニ}}$
である。ただし、$\boxed{チ}$, $\boxed{テ}$, $\boxed{ト}$, $\boxed{ニ}$はできるだけ小さな自然数とする。
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 
PAGE TOP