球の表面積を一瞬で理解 - 質問解決D.B.(データベース)

球の表面積を一瞬で理解

問題文全文(内容文):
下記質問の解説動画です
球の表面積が$4 \pi r^2$が納得できないです
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
球の表面積が$4 \pi r^2$が納得できないです
投稿日:2023.02.19

<関連動画>

福田のおもしろ数学016〜ジュニア数学オリンピック予選問題〜正三角形の面積

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#中2数学#数学検定・数学甲子園・数学オリンピック等#平面図形#角度と面積#平面図形#三角形と四角形#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
正三角形 ABC を図のように、 3 辺に平行な線分を 1 本ずっ引いて分割した。書かれている数は分割してできた正三角形の面積を表している。このとき、正三角形の面積を求めよ。
※図は動画内参照

ジュニア数学オリンピック過去問
この動画を見る 

浦和学院のラスボス

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#体積・表面積・回転体・水量・変化のグラフ#立体図形その他#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
すべての辺の長さが2の正四角錐
四面体ABMNの体積=?

浦和学院高等学校
この動画を見る 

福田のおもしろ数学041〜立体の切断〜立方体を切った切り口

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#空間図形#立体図形#立体切断
指導講師: 福田次郎
問題文全文(内容文):
立方体 ABCD-EFGH を 3 点 P,Q,E を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
この動画を見る 

【中学数学】方程式の利用~追いつく系の問題を丁寧に~【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 
PAGE TOP