【数Ⅰ】【図形と計量】三角比の変換応用 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】三角比の変換応用 ※問題文は概要欄

問題文全文(内容文):
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
チャプター:

0:00 オープニング
0:11 (1)考え方の確認
2:26 80°を超鋭角に直す
4:39 100°を超鋭角に直す
6:29 170°を超鋭角に直す
9:00 式を計算する
10:36 (2)問題、解き方確認
11:35 110°を超鋭角に直す
14:12 三角比の相互関係を駆使して計算
16:40 (3)問題確認
17:07 (180°-θ)をθに
18:52 (90°-θ)をθに
20:21 (90°+θ)をθに
21:56 あとは計算!

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
投稿日:2025.01.30

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第1問(2)〜2次関数のグラフの位置から係数決定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(2)2次関数$y=ax^2+bx+c$の係数$a,b,c$は次の条件をともに満たすとする。
条件1.$a,b,c$は互いに異なる。
条件2. -3以上5以下の整数である。
この2次関数のグラフが、原点を通り、かつ、頂点が第1象限または第3象限
にあるような$a,b,c$の組は全部で$\boxed{\ \ イ\ \ }$組ある。

2022早稲田大学人間科学部過去問
この動画を見る 

2021昭和(医)いわくつき学習院の過去問と同じ!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.

2021昭和(医)
この動画を見る 

サクッとスッキリ

アイキャッチ画像
単元: #2次方程式と2次不等式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+\dfrac{1}{c}=1 \\
b+\dfrac{1}{a}=1\\
c+\dfrac{1}{b}=5 \\
\end{array}
\right.
\end{eqnarray}$

$abc$はいくつか?
この動画を見る 

中学受験算数「資料の活用⑤(最頻値と中央値)」小学4年生~6年生対象【毎日配信】※概要欄をご確認下さい。

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1 8人の生徒に10点満点の単語テストを実施したら、 以下のようになりました。 10点 8点 7点 7点 8点 10点 3点 7点
(1)最頻値を求めなさい。

(2) 中央値を求めなさい。


例2 次の図はあるクラスの男子20人の体重をヒストグラムで 表したものです。


(1)最頻値を求めなさい。

(2) 中央値の含まれる階段を答えなさい。

*図は動画内参照
この動画を見る 

自治医大 関数の最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ

出典:自治医科大学 過去問
この動画を見る 
PAGE TOP