【数Ⅰ】【図形と計量】三角比の変換応用 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】三角比の変換応用 ※問題文は概要欄

問題文全文(内容文):
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
チャプター:

0:00 オープニング
0:11 (1)考え方の確認
2:26 80°を超鋭角に直す
4:39 100°を超鋭角に直す
6:29 170°を超鋭角に直す
9:00 式を計算する
10:36 (2)問題、解き方確認
11:35 110°を超鋭角に直す
14:12 三角比の相互関係を駆使して計算
16:40 (3)問題確認
17:07 (180°-θ)をθに
18:52 (90°-θ)をθに
20:21 (90°+θ)をθに
21:56 あとは計算!

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を簡単にせよ。
(1) sin10°cos80°-sin100°cos170°
(2) 1/(1+sin²20°)-tan²110°
(3) sin²(180°-θ)+sin²(90°-θ)+sin²(90°+θ)+cos²(90°-θ)
投稿日:2025.01.30

<関連動画>

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
この動画を見る 

公立はこだて未来大 方程式の解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#公立はこだて未来大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x+y+z=3$
$xy+yz=zx=3$を満たす実数の組$(x,y,z)$は(1,1,1)のみであることを示せ。

出典:2002年公立はこだて未来大学 過去問
この動画を見る 

【高校数学】2次方程式①~新たな解の公式~ 2-7【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の説明動画です
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 座標平面上の原点を中心とする$半径2$の円を$C_1$、中心の座標が$(7,0)$、$半径3$の円を$C_2$とする。さらに$r$を正の実数とするとき、$C_1$と$C_2$に同時に外接する円で、その中心の座標が$(a,b)$、半径が$r$であるものを$C_3$とする。ただし、2つの円が外接するとは、それらが$1点$を共有し、中心が互いの外部にあるときをいう。
$(1)r$の最小値は$\boxed{\ \ ア\ \ }$であり、$a$の最大値は$\boxed{\ \ イ\ \ }$となる。
$(2)a$と$b$は関係式$b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)$を満たす。
$(3)C_3$が$直線x=-3$に接するとき、$a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $|b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}$である。
$(4)点(a,b)$と原点を通る直線と、$点(a,b)$と$点(7,0)$を通る直線が直交するとき、
$|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}$となる。

2021慶應義塾大学経済学部過去問
この動画を見る 

【スッキリ理解できる…!】一次関数:駿台甲府高等学校~全国入試問題解法

アイキャッチ画像
単元: #図形と計量#平面図形#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点$A = (1.4) B = (7.2)$で、$点Pは正の所を動く。$$\triangle APB$の周の長さが最小となるとき点$P$の座標を求めよ
この動画を見る 
PAGE TOP