福田の数学〜青山学院大学2022年理工学部第4問〜部分積分と定積分で表された関数 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2022年理工学部第4問〜部分積分と定積分で表された関数

問題文全文(内容文):
$ x \gt 0$を定義域とする関数f(x)が次の等式
$f(x)=\int_1^e\log(xt) f(t)dt+x$
を満たすとき、以下の問いに答えよ。
(1)$\int_1^e\log x dx$を求めよ。
(2)$\int_1^e(\log x)^2 dx$ を求めよ。
(3)$\int_1^ex\log x dx$を求めよ。
(4)$f(x)$を求めよ。

2022青山学院大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$ x \gt 0$を定義域とする関数f(x)が次の等式
$f(x)=\int_1^e\log(xt) f(t)dt+x$
を満たすとき、以下の問いに答えよ。
(1)$\int_1^e\log x dx$を求めよ。
(2)$\int_1^e(\log x)^2 dx$ を求めよ。
(3)$\int_1^ex\log x dx$を求めよ。
(4)$f(x)$を求めよ。

2022青山学院大学理工学部過去問
投稿日:2022.09.29

<関連動画>

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 

大学入試問題#178 東京大学昭和10年 定積分 King property

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{1+\cos^2x}\ dx$を計算せよ。

出典:昭和10年東京大学 入試問題
この動画を見る 

大学入試問題#857「スッキリとした解答になるはず」 #大阪市立大学(1998) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{\mathit{u}^{(\frac{3}{2})}}\{\sin(log\ \mathit{u})+\displaystyle \frac{1}{2}\cos(log\ \mathit{u})\}du$

出典:1998年大阪市立大学
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 

【高校数学】毎日積分26日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{log3}{2}}\frac{e^x+1}{e^{2x}+1}dx$
これを解け.
この動画を見る 
PAGE TOP