ナイスな連立4元三次方程式 - 質問解決D.B.(データベース)

ナイスな連立4元三次方程式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=30 \\\
b+acd=30 \\
c+abd=30 \\
d+abc=30
\end{array}
\right.
\end{eqnarray}$
を解け.
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=30 \\\
b+acd=30 \\
c+abd=30 \\
d+abc=30
\end{array}
\right.
\end{eqnarray}$
を解け.
投稿日:2022.12.25

<関連動画>

東京都立大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{\sqrt{ 3 }+i}{1+\sqrt{ 3 }i})^{10}=a_1+a_2i$

$(\displaystyle \frac{\sqrt{ 3 }-i}{1-\sqrt{ 3 }i})^{10}=b_1+b_2i$

(1)
$a_1,a_2,b_1,b_2$を求めよ

(2)
$A(a_1,a_2)$ $B(b_1,b_2)$
$\triangle OAB$の面積を求めよ

出典:2001年東京都立大学 過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第4問〜3変数の基本対称式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#複素数#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$互いに異なる実数$a,b,c$について、
$a+b+c=0,\ bc+ca+ab=-3$であるとき、
$abc$のとりうる値の範囲は、$\boxed{\ \ ア\ \ } \lt abc \lt \boxed{\ \ イ\ \ }$である。
さらに$a \lt b \lt c$のとき、$a,b,c$のとりうる値の範囲は
$\boxed{\ \ ウ\ \ } \lt a \lt \boxed{\ \ エ\ \ } \lt b \lt \boxed{\ \ オ\ \ } \lt c \lt \boxed{\ \ カ\ \ }$である。

2022早稲田大学人間科学部過去問
この動画を見る 

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-\sqrt3x+1=0$のとき,
$x^{30}+\dfrac{1}{x^{30}}$の値を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-26 複素数④

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の数の平方根を書こう。

①$5$

②$9$

③$-7$

④$-16$

⑤$-12$

◎次の式を計算しよう。

⑥$\sqrt{ -12 }\sqrt{ -3 }$

⑦$\sqrt{ -18 }\sqrt{ 8 }$

⑧$\displaystyle \frac{\sqrt{ -2 }}{\sqrt{ 3 }}$

⑨$\displaystyle \frac{2+\sqrt{ -5 }}{2-\sqrt{ -5 }}$
この動画を見る 

福田の数学〜九州大学2025理系第5問〜3次方程式の解と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#複素数と方程式#場合の数#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$1$個のさいころを$3$回続けて投げ、

出る目を順に$a,b,c$とする。

整式$f(x)=(x^2-ax+b)(x-c)$

について、以下の問いに答えよ。

(1)$f(x)=0$をみたす実数$x$の個数が

$1$個である確率を求めよ。

(2)$f(x)=0$をみたす自然数$x$の個数が

$3$個である確率を求めよ。

$2025$年九州大学理系過去問題
この動画を見る 
PAGE TOP