【数B】空間ベクトル:東京理科大 座標空間の図形問題 - 質問解決D.B.(データベース)

【数B】空間ベクトル:東京理科大 座標空間の図形問題

問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1)
3:43 問題解説(2)
4:49 別解(図形を座標に乗せる)
7:35 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
投稿日:2021.01.17

<関連動画>

【数C】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよ。
また、中心座標と半径も求めよ。
この動画を見る 

【数B】空間ベクトル:2直線の交点の位置ベクトル!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、辺ABを1:3に内分する点をL、点OCを3:1に内分する点をM、線分CLを3:2に内分する点をN、線分LMとONの交点をPとし、OA=a、OB=b、OC=cとするとき、OPをa,b,cで表せ。
この動画を見る 

杏林大学2023医学部第2問訂正動画

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。

$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+\overrightarrow{ A_1C_1 }=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。

次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }}, \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。

$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$


最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 

【数C】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
この動画を見る 
PAGE TOP