【数C】空間ベクトル:東京理科大 座標空間の図形問題 - 質問解決D.B.(データベース)

【数C】空間ベクトル:東京理科大 座標空間の図形問題

問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1)
3:43 問題解説(2)
4:49 別解(図形を座標に乗せる)
7:35 名言

単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
投稿日:2021.01.17

<関連動画>

福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$tを実数とする。また、Oを原点とする座標空間内に
3点$A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)$をとる。
(1)$\triangle OAB$の面積を求めよ。
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を
すべて求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題086〜慶應義塾大学2020年度医学部第1問(1)〜平面と平面のなす角

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。

2020慶應義塾大学医学部過去問
この動画を見る 

【空間ベクトルの根本】空間ベクトルで混乱する前に確認したいこと〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
空間ベクトルについて解説します。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$aを1以上の実数とし、$AB=BC=CA=1$および$AD=BD=CD=a$
を満たす四面体ABCDを考える。このとき、$\cos\angle BAD=\boxed{\ \ ア\ \ }$である。
また、ADの中点をEとしたとき、$\overrightarrow{ EB }$を$\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }$を用いて表すと
$\overrightarrow{ EB }=\boxed{\ \ イ\ \ }$となるので、$|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }$で、
$\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }$
である。よって、$a=1$のとき、$\cos\angle BEC=\boxed{\ \ オ\ \ }$であり、
$\angle BEC=60°$となるのは$a=\boxed{\ \ カ\ \ }$のときである。

2022慶応義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 
PAGE TOP