【数C】空間ベクトル:東京理科大 座標空間の図形問題 - 質問解決D.B.(データベース)

【数C】空間ベクトル:東京理科大 座標空間の図形問題

問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1)
3:43 問題解説(2)
4:49 別解(図形を座標に乗せる)
7:35 名言

単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
投稿日:2021.01.17

<関連動画>

【数B】空間ベクトル:ベクトルの大きさの最小値

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a=(3,4,4), b=(2,3,-1)$がある。実数 t を変化させるとき、$c=a+tb$の大きさの最小値と、その時の t の値を求めよ。
この動画を見る 

【数C】【空間ベクトル】四面体OABCの辺OA,OB,OCを1:1,2:1,3:1に内分する点を、P,Q,Rとする。点Cと重心Gを通る直線が平面OABと交わる点をHとする。OHをa、bを用いて表せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OA,OB,OCをそれぞれ1:1,2:1,3:1に内分する点を、順にP,Q,Rとする。点Cと△PQRの重心Gを通る直線が平面OABと交わる点をHとする。OA=a、OB=bとするとき、OHをa、bを用いて表せ。
この動画を見る 

【数C】【空間ベクトル】4点A(1,0,0)、B(0,1,0)、C(0,0,2)、D(1,2,3)がある。△ABCの面積Sと、四面体ABCDの体積Vを求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A(1,0,0)、B(0,1,0)、C(0,0,2)、D(1,2,3)がある。△ABCの面積Sと、四面体ABCDの体積Vを求めよ。
この動画を見る 

【数C】ベクトルの基本⑱空間ベクトルの基本計算

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトルの基本
a=(2,2,4),b=(4,4,2)のなす角を求めよ
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(4)〜2つのベクトルに垂直な単位ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)2つのベクトル$\overrightarrow{ a }=(4,\ -2,\ 3),\ \overrightarrow{ b }=(-4,\ 5,\ -3)$の両方に垂直な
単位ベクトルを全て求めよ。

2021中央大経済学部過去問
この動画を見る 
PAGE TOP