【数C】【平面上のベクトル】ベクトル方程式2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトル方程式2 ※問題文は概要欄

問題文全文(内容文):
O(0,0), A(2,0), B(1,2)に対して、
点Pが次の条件を満たしながら動くとき、
点Pの存在範囲を図示せよ。

(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦s≦1$, $1≦t≦3$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $1≦s+t≦3$
(3) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦2s+3t≦6$, $s≧0$, $t≧0$
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
O(0,0), A(2,0), B(1,2)に対して、
点Pが次の条件を満たしながら動くとき、
点Pの存在範囲を図示せよ。

(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦s≦1$, $1≦t≦3$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $1≦s+t≦3$
(3) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦2s+3t≦6$, $s≧0$, $t≧0$
投稿日:2025.05.19

<関連動画>

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

【数C】【ベクトルの内積】a = √2, b = √5, a・b = -1のとき、 a+2bとa-bのなす角を求めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=\sqrt{2}, |\vec{b}|=\sqrt{5}, \vec{a}\cdot\vec{b}=-1$のとき,
$\vec{a}+2\vec{b}$と$\vec{a}-\vec{b}$のなす角$\theta$を求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトル方程式5 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle$ABCの頂点A, B, Cの位置ベクトルを, それぞれ$\vec{a}$, $\vec{b}$, $\vec{c}$とする。
直線上の点をP($\vec{p}$)として, 次の直線のベクトル方程式を求めよ。
(1) Aから直線BCへの垂線$\qquad$
(2) Aと辺BCの中点を通る直線
この動画を見る 

【高校数学】 数B-34 平面上の点の存在位置③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎O(0.0)、A(2.1)、B(1.2)、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S、tが次の条件を満たし ながら変化するとき、点Pの存在範囲を図示しよう。

①$\displaystyle \frac{1}{2}s+t \leqq 2,s \geqq 0,t \geqq 0$

②$ 1\leqq s \leqq 2 ,0 \leqq t \leqq 1$
この動画を見る 
PAGE TOP