福田の数学〜慶應義塾大学2025経済学部第3問〜反復試行の確率と条件付き確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2025経済学部第3問〜反復試行の確率と条件付き確率

問題文全文(内容文):

$\boxed{3}$

$2$枚の硬貨を同時に投げることを試行という。

各回の試行において、座標平面上の点$P$は

次の$(A),(B),(C)$に従って座標平面を移動する。

$(A)$ 点$P$が$(x,y)$にあるとき、表が$2$枚出れば

$(x+1,y+\sqrt3)$に移動する。

$(B)$ 点$P$が$(x,y)$にあるとき、裏が$2$枚出れば

$(x+1,y-\sqrt3)$に移動する。

$(C)$点$P$が$(1,\sqrt3)$にあるとき、

表と裏が$1$枚ずつ出れば

$(x-2,y)$に移動する。

例えば、点$P$が$(1,\sqrt3)$にあるとき、

裏が$2$枚出れば、点$P$は$(2,0)$に移動する。

(1)$1$回目の試行前に原点にある点$P$が、

$3$回目の試行後原点にある確率は

$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)$1$回目の試行前に原点がある点$P$が、

$3$回目の試行前に$y$軸上にある確率は

$\dfrac{\boxed{エ}}{\boxed{オ}}$

(3)$1$回目の試行前に原点がある点$P$が、

$5$回目の試行前に$x$軸上にある確率は

$\dfrac{\boxed{カキ}}{\boxed{クケコ}}$である。

(4)$1$回目の試行前に原点にある点$P$が、

$5$回目の試行後に$x$軸上にあるとき。

$8$回目の試行後に円$x^2+y^2=4$上にある

条件付き確率は$\dfrac{\boxed{サシ}}{\boxed{スセソ}}$である。

$2025$年慶應義塾大学経済学部過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$2$枚の硬貨を同時に投げることを試行という。

各回の試行において、座標平面上の点$P$は

次の$(A),(B),(C)$に従って座標平面を移動する。

$(A)$ 点$P$が$(x,y)$にあるとき、表が$2$枚出れば

$(x+1,y+\sqrt3)$に移動する。

$(B)$ 点$P$が$(x,y)$にあるとき、裏が$2$枚出れば

$(x+1,y-\sqrt3)$に移動する。

$(C)$点$P$が$(1,\sqrt3)$にあるとき、

表と裏が$1$枚ずつ出れば

$(x-2,y)$に移動する。

例えば、点$P$が$(1,\sqrt3)$にあるとき、

裏が$2$枚出れば、点$P$は$(2,0)$に移動する。

(1)$1$回目の試行前に原点にある点$P$が、

$3$回目の試行後原点にある確率は

$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)$1$回目の試行前に原点がある点$P$が、

$3$回目の試行前に$y$軸上にある確率は

$\dfrac{\boxed{エ}}{\boxed{オ}}$

(3)$1$回目の試行前に原点がある点$P$が、

$5$回目の試行前に$x$軸上にある確率は

$\dfrac{\boxed{カキ}}{\boxed{クケコ}}$である。

(4)$1$回目の試行前に原点にある点$P$が、

$5$回目の試行後に$x$軸上にあるとき。

$8$回目の試行後に円$x^2+y^2=4$上にある

条件付き確率は$\dfrac{\boxed{サシ}}{\boxed{スセソ}}$である。

$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.22

<関連動画>

【数A】中高一貫校問題集3(論理・確率編)171:場合の数と確率:反復試行の確率(ひっかけあり!!):先に3勝する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AとBが試合を行い、先に3勝した方を優勝者とする。各試合でAが勝つ確率は2/3で引き分けはないとする。このとき、Aが優勝する確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】重複組合せ4 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを3回投げて出る目の数を順に$a,b,c$とする。次の場合は何通りあるか。
(1) $a < b < c$
(2) $a \leqq b\leqq c$
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(2)〜袋から球を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)袋の中に赤玉5個と白玉5個が入っている。次の規則に従って袋から玉を無作為に取り出す。
ステップ1. 袋から玉を3個取り出す。
ステップ2. ステップ1で取り出した玉の中に含まれている赤玉の数と同じ数の玉を袋から取り出す。

このとき、2回取り出した玉の中で赤玉が合計3個となる事象の確率を求めよ。
ただし、ステップ1の後、取り出された玉を袋に戻さない。
この動画を見る 

慶應義塾 多項定理 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#式の計算(整式・展開・因数分解)#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$(3x^2+x-2)^5$
$x^6$の係数
この動画を見る 

中学生でも解ける京大の入試問題!解けますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。

京都大過去問
この動画を見る 
PAGE TOP