気付けば爽快!!ルートの入った連立方程式 - 質問解決D.B.(データベース)

気付けば爽快!!ルートの入った連立方程式

問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x - y = 51 \\
\sqrt x + \sqrt y = 17

\end{array}
\right.
\end{eqnarray}
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x - y = 51 \\
\sqrt x + \sqrt y = 17

\end{array}
\right.
\end{eqnarray}
投稿日:2023.04.15

<関連動画>

台形の面積=❓

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
台形の面積は?
*図は動画内参照
この動画を見る 

【高校受験対策/数学/関数1】交点→面積(王道パターン)

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で、直線ℓは関数y=3x+9のグラフ、
直線mは関数y=-x+5のグラフです。
また、 y軸と直線ℓ、直線mとの交点をそれぞれA、Bとし、
直線ℓと直線mの交点をPとします。
ただし、座標の 1目もりを1cmとします。

①ABの長さは?

②点Pの座標は?

③△PABの面積は?

④直線上に点Qをとります。
点Qから軸に平行な直線をひき、X軸との交点をRとする。
また、点Qから X軸に平行な直線をひき、直線との交点をSとし、 点Sからy軸に平行な直線をひき、X軸との交点をTとします。
四角形QRTSの周の長さが14cmになるとき、 Qの座標をすべて求めよう!
※図は動画内参照
この動画を見る 

対称式の連立三元三次方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\leqq y\leqq z)$

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=4 \\
x^2+y^2+z^2=10\\
x^3+y^3+z^3=22 \\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

『当たり前で草』の証明

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
内閣の和$180^{ \circ }$証明動画です
この動画を見る 

中2数学「直角三角形の合同証明②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~直角三角形の合同証明②~

例1 次の図は、AB=ACの二等辺三角形ABCで、頂点Bから辺ACに垂線をひき、その交点をD、また、頂点Cから辺ABに垂線をひき、その交点をEとします。このとき、AD=AEであることを証明しなさい。

※図は動画内参照
この動画を見る 
PAGE TOP