問題文全文(内容文):
高校受験対策・関数47
Q.
右図において、①は$y=x^2$のグラフであり、②は$y=\frac{3}{4}x$のグラフである。
①上に点$P(p,p^2)$がある。
点$P$を通り軸に平行な直線と、②との交点を$Q$、$x$軸との交点を$R$とする。
また、点$P$を通り$x$軸に平行な直線と②との交点を$S$とする。
このとき次の各問いに答えなさい。ただし、$0 \lt p \lt \frac{3}{4}$とする。
問1
$p=2$のとき、$△PQS$の面積を求めなさい。
問2
$PQ=\frac{5}{64}$であるとき、$P$の値をすべて求めなさい。
問3
点$P$を中心として、$x$軸と点$R$で接する円が②と2つの点$A$、$B$で交わっている。
$\angle APB$を中心角とするおうぎ形$PAB$の面積が円の面積の$\frac{1}{3}$になるとき、$P$の値を求めなさい。
高校受験対策・関数47
Q.
右図において、①は$y=x^2$のグラフであり、②は$y=\frac{3}{4}x$のグラフである。
①上に点$P(p,p^2)$がある。
点$P$を通り軸に平行な直線と、②との交点を$Q$、$x$軸との交点を$R$とする。
また、点$P$を通り$x$軸に平行な直線と②との交点を$S$とする。
このとき次の各問いに答えなさい。ただし、$0 \lt p \lt \frac{3}{4}$とする。
問1
$p=2$のとき、$△PQS$の面積を求めなさい。
問2
$PQ=\frac{5}{64}$であるとき、$P$の値をすべて求めなさい。
問3
点$P$を中心として、$x$軸と点$R$で接する円が②と2つの点$A$、$B$で交わっている。
$\angle APB$を中心角とするおうぎ形$PAB$の面積が円の面積の$\frac{1}{3}$になるとき、$P$の値を求めなさい。
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数47
Q.
右図において、①は$y=x^2$のグラフであり、②は$y=\frac{3}{4}x$のグラフである。
①上に点$P(p,p^2)$がある。
点$P$を通り軸に平行な直線と、②との交点を$Q$、$x$軸との交点を$R$とする。
また、点$P$を通り$x$軸に平行な直線と②との交点を$S$とする。
このとき次の各問いに答えなさい。ただし、$0 \lt p \lt \frac{3}{4}$とする。
問1
$p=2$のとき、$△PQS$の面積を求めなさい。
問2
$PQ=\frac{5}{64}$であるとき、$P$の値をすべて求めなさい。
問3
点$P$を中心として、$x$軸と点$R$で接する円が②と2つの点$A$、$B$で交わっている。
$\angle APB$を中心角とするおうぎ形$PAB$の面積が円の面積の$\frac{1}{3}$になるとき、$P$の値を求めなさい。
高校受験対策・関数47
Q.
右図において、①は$y=x^2$のグラフであり、②は$y=\frac{3}{4}x$のグラフである。
①上に点$P(p,p^2)$がある。
点$P$を通り軸に平行な直線と、②との交点を$Q$、$x$軸との交点を$R$とする。
また、点$P$を通り$x$軸に平行な直線と②との交点を$S$とする。
このとき次の各問いに答えなさい。ただし、$0 \lt p \lt \frac{3}{4}$とする。
問1
$p=2$のとき、$△PQS$の面積を求めなさい。
問2
$PQ=\frac{5}{64}$であるとき、$P$の値をすべて求めなさい。
問3
点$P$を中心として、$x$軸と点$R$で接する円が②と2つの点$A$、$B$で交わっている。
$\angle APB$を中心角とするおうぎ形$PAB$の面積が円の面積の$\frac{1}{3}$になるとき、$P$の値を求めなさい。
投稿日:2020.01.20