数学「大学入試良問集」【19−6 楕円と回転体の体積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−6 楕円と回転体の体積】を宇宙一わかりやすく

問題文全文(内容文):
$0 \lt a \lt 1$とする。
点$(1,0)$から楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$に引いた接線の接点の$x$座標を$b$とする。

(1)
$b$を$a$で表せ。

(2)
楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$の$b \leqq x \leqq a$の部分と直線$x=b$で囲まれた図形を、$x$軸のまわり1回転してできる回転体の体積$V$を求めよ。

(3)
$V$の値が最大となる$a$の値と、そのときの$V$の最大値を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$とする。
点$(1,0)$から楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$に引いた接線の接点の$x$座標を$b$とする。

(1)
$b$を$a$で表せ。

(2)
楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$の$b \leqq x \leqq a$の部分と直線$x=b$で囲まれた図形を、$x$軸のまわり1回転してできる回転体の体積$V$を求めよ。

(3)
$V$の値が最大となる$a$の値と、そのときの$V$の最大値を求めよ。
投稿日:2021.08.19

<関連動画>

【数Ⅲ-171】積分と体積②(断面積編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積②、断面積編)

ポイント
座標が$x$の点を通る$x$軸に垂直な平面による立体の切り口の面積を$S(x)$とするとき、
2平面$x=a$、$x=b$の間にある立体の体積$V$は$V=$①。

②$xy$平面上に2点P$(x,0)$、Q$(x,\sin x)$をとり、PQを斜辺とする直角二等辺三角形PQRを、$x$軸に垂直な平面上に図のようにつくる。
Pが$x$軸上を原点oから点A$(\pi,0)$まで動くとき、この直角二等辺三角形が通過してできる立体の 体積を求めよ。
この動画を見る 

大学入試問題#820「初手は見えるが、次の手は?」 #奈良教育大学(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$

出典:2023年奈良教育大学 入試問題
この動画を見る 

【高校数学】毎日積分61日目~47都道府県制覇への道~【⑤大分】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
この動画を見る 

東邦大学医学部医学科(2015) #Shorts #King_property #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{-2}^{2} \displaystyle \frac{x^22^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部医学科
この動画を見る 

【高校数学】毎日積分62日目~47都道府県制覇への道~【⑥長崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
この動画を見る 
PAGE TOP