大学入試問題#50 神戸大学2016 x軸回転体 - 質問解決D.B.(データベース)

大学入試問題#50 神戸大学2016 x軸回転体

問題文全文(内容文):
$a \gt 0$
$C_1:y=log\ x$
$c_2:y=ax^2$
$c_1$と$c_2$は接する。
$c_1,\ c_2,\ x$軸で囲まれた部分を$x$軸のまわりに1回転させてできる体積を求めよ。

出典:2016年神戸大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$C_1:y=log\ x$
$c_2:y=ax^2$
$c_1$と$c_2$は接する。
$c_1,\ c_2,\ x$軸で囲まれた部分を$x$軸のまわりに1回転させてできる体積を求めよ。

出典:2016年神戸大学 入試問題
投稿日:2021.11.26

<関連動画>

慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか

(1)
$x+y+z=24$

(2)
$x+y+z=24$
$x \leqq y \leqq z$

(3)
$x+2y+3z=24$

出典:2009年慶應義塾 過去問
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

2025年高校別早稲田大学合格者数ランキング #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#早稲田大学#数学(高校生)#理科(高校生)#早稲田大学#早稲田大学
指導講師: Morite2 English Channel
問題文全文(内容文):
2025年版!高校別早稲田大学合格者数ランキング速報がヤバい!

早稲田大学合格者数の2025年版!高校別早稲田大学合格者数ランキング速報がヤバい!

早稲田大学合格者数の高校別ランキング上位20位が判明したぞ。

栄えある第1位は、今年も**早稲田高校**で、なんと**250人**合格という圧倒的な強さを見せつけた。東大のモデルにしているところが賢いらしい。

第2位は**栄東高校**(埼玉)で228人。所沢キャンパスが近くにあるのも影響しているようだ。

そして、東大でもめちゃくちゃ伸びた**横浜翠嵐高校**(神奈川)が第3位にランクインし、171人を合格させている。第4位は**聖光学院**(神奈川)の170人、第5位は早稲田合格者数で有名な**市川高校**で164人だ。

その他の注目校は以下の通り!

* 第6位:本郷 (145人)
* 第7位:洗足学園 (神奈川, 136人)
* 第8位:千葉県立千葉 (123人)
* 第10位:**渋渋(渋谷教育学園渋谷)**が120人で、今年も強い。
* 第14位:**県立船橋**(千葉)が111人で、公立校も食い込んでいる。

このランキングを見れば、早稲田を目指すならどこに行くべきか一目瞭然だ!
この動画を見る 

昭和大学医学部 2018年 区分求積法 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n (\displaystyle \frac{\sqrt{ n }}{n+k})^2$

出典:2018年昭和大学医学部
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 
PAGE TOP