大学入試問題#852「これは、大変・・・グラフでもいけるんかなー」 #小樽商科大学(2018) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#852「これは、大変・・・グラフでもいけるんかなー」 #小樽商科大学(2018) #整数問題

問題文全文(内容文):
$\displaystyle \frac{2n-2}{n^2+2n+2}$が整数となるような整数$n$をすべて求めよ

出典:2018年小樽商科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{2n-2}{n^2+2n+2}$が整数となるような整数$n$をすべて求めよ

出典:2018年小樽商科大学
投稿日:2024.06.17

<関連動画>

大学入試問題#554「受験生の心を折にきてる。」 東邦大学医学部(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+1}{x^4+1} dx$

出典:2013年東邦大学医学部 入試問題
この動画を見る 

大学入試問題#465「よくある極限問題」 電気通信大学2009 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$

出典:2009年電気通信大学 入試問題
この動画を見る 

東京水産大 三次関数 三角形面積最大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^3+8x+3$
$f(x)$上の2つの定点$A(0,3),B(3,0)$と動点$P(a,f(a))(0 \lt a \lt 3)\triangle PAB$の面積の最大値は?

出典:2002年東京海洋大学 過去問
この動画を見る 

【高校数学】岐阜大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分84日目~47都道府県制覇への道~【㉗岐阜】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$y=x^3-x$により定まる座標平面上の曲線をCとする。
C上の点P$(\alpha,\alpha^3-\alpha)$を通り、
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。
(1)$\alpha$のとりうる値の範囲を求めよ。
(2)Cとlの点P以外の2つの交点のx座標を$\beta,\gamma$とする。ただし$\beta \lt \gamma$とする。
$\beta^2+\beta\gamma+\gamma^2-1\neq 0$ となることを示せ。
(3)(2)の$\beta,\gamma$を用いて、
$u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}$
と定める。このとき、uの取りうる値の範囲を求めよ。

2022東京大学文系過去問
この動画を見る 
PAGE TOP