大学入試問題#852「これは、大変・・・グラフでもいけるんかなー」 #小樽商科大学(2018) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#852「これは、大変・・・グラフでもいけるんかなー」 #小樽商科大学(2018) #整数問題

問題文全文(内容文):
$\displaystyle \frac{2n-2}{n^2+2n+2}$が整数となるような整数$n$をすべて求めよ

出典:2018年小樽商科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{2n-2}{n^2+2n+2}$が整数となるような整数$n$をすべて求めよ

出典:2018年小樽商科大学
投稿日:2024.06.17

<関連動画>

福田の数学〜京都大学2023年文系第5問〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)が恒等式
f(x)+$\displaystyle\int_{-1}^1(x-y)^2f(y)dy$=$2x^2$+$x$+$\frac{5}{3}$
を満たすとき、f(x)を求めよ。

2023京都大学文系過去問
この動画を見る 

大学入試問題#318 立教大学 改 (2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{(log\ x)^4}{x^2}dx$

出典:2021年立教大学 入試問題
この動画を見る 

宮崎大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ

出典:2019年宮崎大学 過去問
この動画を見る 

福田の数学〜浜松医科大学2024医学部第4問〜直線に関する対称点と絶対不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正方形の紙 $\alpha$ に下図のように座標軸をとり、 $2$ 点 $\mathrm{A}(0,1),$ $\mathrm{B}(-2,0)$ および、 $2$ 直線 $y=-1,$$x=2$ を定める(図は動画内参照)。以下この $2$ 直線をそれぞれ $l_1,l_2$ と表す。このとき、点 $\mathrm{A}$ を直線 $l_1$ 上の点 $\mathrm{A'}(a,-1)$ に重ねて $\alpha$ を折ったときにできる折り目の直線を $l_3(a)$ とする。ただし、 $\mathrm{A'}$ は $\alpha$ 上にとることとし、また、以下の操作はすべて $\alpha$ 上で行うこととする。以下の問いに答えよ。
$(1)$ 直線 $l_3(a)$ の方程式を、 $a$ を用いて表せ。
$(2)$ 点 $\mathrm{A}$ が直線 $l_1$ 上に位置するように $\alpha$ を折り、そのときできる折り目により、 $\alpha$ を $2$ つに分割する。このとき、点 $\mathrm{A}$ が直線 $l_1$ 上に位置するような、どのような折り方をしても、その折り目に対して常に点 $\mathrm{A}$ と同じ側にある点全体の集合の境界線の方程式を求めよ。
$(3)$ 点 $\mathrm{A}$ が直線 $l_1$ 上の点 $\mathrm{A'}$ に重なると同時に、点 $\mathrm{B}$ が直線 $l_2$ 上の点に重なるように $\alpha$ を折るとき、 $a$ の値を求めよ。
この動画を見る 

大学入試問題#290 産業医科大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{d\theta}{\sqrt{ 2 }\cos(\theta-\displaystyle \frac{\pi}{4})}$

出典:2013年産業医科大学 入試問題
この動画を見る 
PAGE TOP