問題文全文(内容文):
四面体OABCの辺OA,OB,OCをそれぞれ1:1,2:1,3:1に内分する点を、順にP,Q,Rとする。点Cと△PQRの重心Gを通る直線が平面OABと交わる点をHとする。OA=a、OB=bとするとき、OHをa、bを用いて表せ。
四面体OABCの辺OA,OB,OCをそれぞれ1:1,2:1,3:1に内分する点を、順にP,Q,Rとする。点Cと△PQRの重心Gを通る直線が平面OABと交わる点をHとする。OA=a、OB=bとするとき、OHをa、bを用いて表せ。
チャプター:
0:00 問題概要
0:27 空間図形なのでベクトルは基本的に3本必要
0:41 P,Q,Rの位置ベクトルを作る
1:09 △PQRの重心の位置ベクトル
2:40 ベクトルOHを表す
2:55 ベクトルa,bだけで表されるとは?
4:59 解答
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OA,OB,OCをそれぞれ1:1,2:1,3:1に内分する点を、順にP,Q,Rとする。点Cと△PQRの重心Gを通る直線が平面OABと交わる点をHとする。OA=a、OB=bとするとき、OHをa、bを用いて表せ。
四面体OABCの辺OA,OB,OCをそれぞれ1:1,2:1,3:1に内分する点を、順にP,Q,Rとする。点Cと△PQRの重心Gを通る直線が平面OABと交わる点をHとする。OA=a、OB=bとするとき、OHをa、bを用いて表せ。
投稿日:2025.08.23





