【高校数学】確率の基本性質~排反~ 2-2 【数学A】 - 質問解決D.B.(データベース)

【高校数学】確率の基本性質~排反~ 2-2 【数学A】

問題文全文(内容文):
確率の基本性質 排反の説明動画です
チャプター:

00:00 はじまり

00:43 積事象・和事象の説明

02:11 排反の説明

02:38 排反の具体例

03:28 排反の問題

05:42 排反を詳しく解説

07:13 基本性質の数学的な説明

08:19 集合とのつながり

09:28 まとめ

単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
確率の基本性質 排反の説明動画です
投稿日:2020.07.13

<関連動画>

【数A】場合の数:完全順列をプレゼント交換で説明

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
完全順列をプレゼント交換で説明してみた。
この動画を見る 

内閣の二等分線 西京高校 2022 入試から観る数学の世界

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BP:PD=?
*図は動画内参照

2022西京高等学校
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$P$を平面上の正九角形とする。

$P$の異なる$2$つの頂点を通る直線をすべて考える。

これら$36$本の直線のうちの$3$本により平面上で

囲まれてできる正三角形の総数は$\boxed{エ}$である。

ただし、互いに合同でも位置の異なるものは

異なる三角形として数える。

$2025$年早稲田大学商学部過去問題
この動画を見る 

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第1問(1)〜三角形の面積と線分の長さ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。

座標平面上の$4$点$O,A,B,C$を、

$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$

$C(5\cos3\alpha,5\sin3\alpha)$とする。

(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、

辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。

(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。

(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 
PAGE TOP