【数Ⅲ】【関数と極限】関数f(x)が連続でf(0)=-1、f(1)=2、f(2)=1、f(3)=4のとき、方程式f(x)=xは0<x<3の範囲に少なくとも3個の実数解をもつことを示せ。 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】関数f(x)が連続でf(0)=-1、f(1)=2、f(2)=1、f(3)=4のとき、方程式f(x)=xは0<x<3の範囲に少なくとも3個の実数解をもつことを示せ。

問題文全文(内容文):
関数 $f(x)$ が連続で、$f(0)=-1$、$f(1)=2$、$f(2)=1$、$f(3)=4$ のとき、方程式
$f(x)=x$ は $0
チャプター:

0:00 問題と方針
1:34 解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $f(x)$ が連続で、$f(0)=-1$、$f(1)=2$、$f(2)=1$、$f(3)=4$ のとき、方程式
$f(x)=x$ は $0
投稿日:2026.02.19

<関連動画>

【数Ⅲ】極限:ロピタルを使って極限を簡単に求める

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\dfrac{1-\cos 3x}{x^2}$を求めよ
この動画を見る 

大学入試問題#411「私学の医学科は3乗根の極限がお好き?」 藤田医科大学2022 #極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 8 } \displaystyle \frac{x^2-9x+8}{\sqrt[ 3 ]{ x }-2}$

出典:2022年藤田医科大学 入試問題
この動画を見る 

【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方とグラフの書き方【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の逆関数を求め,そのグラフをかけ。
$y=log_{\frac{1}{3}}x$
この動画を見る 

大学入試問題#477「よくある極限の問題」  藤田医科大学(2023) #極限

アイキャッチ画像
単元: #関数と極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(e^x-1)log(4x+1)}{x^2}$

出典:2023年藤田医科大学 入試問題
この動画を見る 

福田の数学〜千葉大学2024年理系第5問〜確率と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。座標平面上の $2n$ 個の点からなる集合
$\{ (x,y) | x=1,2,3, \cdots , n , y=1,2 \}$
を考える。この集合から異なる $3$ 点を無作為に選び、その $3$ 点を線分で結んで得られる図形の面積を $X$ とする。ただし、 $3$ 点が同一直線上にあるときは $X=0$ とする。
$(1)$ $k$ が $0$ 以上の整数のとき、 $X$ が $\displaystyle \frac{k}{2}$ となる確率 $p_k$ を $n$ と $k$ の式で表せ。
$(2)$ $X$ が $\displaystyle \frac{n}{4}$ 以下となる確率を $q_n$ とおく。 $\displaystyle \lim_{n \to \infty} q_n$ を求めよ。
この動画を見る 
PAGE TOP