東大 不定方程式 - 質問解決D.B.(データベース)

東大 不定方程式

問題文全文(内容文):
$x,y,z$は自然数とする.

①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.

2006東大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数とする.

①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.

2006東大過去問
投稿日:2020.11.19

<関連動画>

東北大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a-2^n=1$ $a,b \varepsilon Z$

(1)
$a,b$はともに正、示せ

(2)
$b \gt 1$のとき、$a$偶数

(3)
$(a,b)$すべて求めよ

出典:2018年東北大学 過去問
この動画を見る 

東大 2015 独自解法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ {}_{2015}\mathrm{C}_{m}$が偶数となる最小の$m$を求めよ.
$1\leqq m\leqq 2015$であり,$m$は自然数とする.

2015東大過去問
この動画を見る 

福田のおもしろ数学322〜有限個の点の集合の性質

アイキャッチ画像
単元: #数A#図形の性質
指導講師: 福田次郎
問題文全文(内容文):
「どの3点A,B,Cを選んでも、△ABCの面積は1未満である」
という性質を持つ平面上の有限個の点がある。
これらすべての点を、周および内部に含むような、面積4未満の三角形が存在することを証明せよ。
この動画を見る 

三角形の面積 おバカな解法・愚直な解法・エレガントな解法

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
図の三角形の面積を求めよ.
この動画を見る 

【数学Ⅰ・新課程】仮説検定の考え方【確率的に正しさを証明する】

アイキャッチ画像
単元: #数Ⅰ#確率#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)ある企業の新商品について20人中15人が「よい」と回答した.$
$この商品は「よい」商品であるか,仮説検定の考え方を用いて考察せよ.$
$(2)A,B,C,D,E,Fの6人の候補者がいる.$
$100人中25人がAを支持していると答えた.$
$Aの支持者は多いと言えるか,仮説検定の考え方を用いて考察せよ.$
この動画を見る 
PAGE TOP