問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{6}{t^2+7t+10} dt$について$\displaystyle \lim_{ x \to \infty } f(x)$を求めよ。
出典:2011年岩手大学
関数$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{6}{t^2+7t+10} dt$について$\displaystyle \lim_{ x \to \infty } f(x)$を求めよ。
出典:2011年岩手大学
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師:
ますただ
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{6}{t^2+7t+10} dt$について$\displaystyle \lim_{ x \to \infty } f(x)$を求めよ。
出典:2011年岩手大学
関数$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{6}{t^2+7t+10} dt$について$\displaystyle \lim_{ x \to \infty } f(x)$を求めよ。
出典:2011年岩手大学
投稿日:2024.05.28