【とにかく、解け!】図形:静岡県高校入試~全国入試問題解法 - 質問解決D.B.(データベース)

【とにかく、解け!】図形:静岡県高校入試~全国入試問題解法

問題文全文(内容文):
入試問題 静岡県の高校

円すいの展開図:
底面→半径$2cm$の円
側面→半径$5cm$の扇形
このおうぎ型の中心角の 大きさを求めなさい。
※図は動画内参照
単元: #数学(中学生)#空間図形#平面図形#静岡県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 静岡県の高校

円すいの展開図:
底面→半径$2cm$の円
側面→半径$5cm$の扇形
このおうぎ型の中心角の 大きさを求めなさい。
※図は動画内参照
投稿日:2020.11.06

<関連動画>

3つの円は〇〇〇    名古屋高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#平面図形#角度と面積#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
面積比1:4:9の3つの円
AB=?
*図は動画内参照

名古屋高等学校
この動画を見る 

【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 正四面体

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のような1辺の長さが2㎝の正四面体ABCDにおいて、3辺AD,BC,CDの中点をそれぞれL,M,Nとする。
(1)線分LMの長さを求めなさい。
(2)△LMNの面積を求めなさい。
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

ただの一次方程式

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{x-3}{2021}+ \dfrac{x}{2022}+ \dfrac{x+3}{2023}=9$
これを解け.
この動画を見る 

素因数分解  教えて下さい たくさんのコメントありがとうございます。

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$7^4-2^4 \times 3^2$を素因数分解せよ。
この動画を見る 
PAGE TOP