九州大のナイスな問題 - 質問解決D.B.(データベース)

九州大のナイスな問題

問題文全文(内容文):
$\alpha=\sqrt5-1+\sqrt{10+2\sqrt5}i$
$\beta=-\sqrt5-1+\sqrt{10-2\sqrt5}i$

(1)$\alpha$を解にもつ実数係数の2次方程式を1つ例示せよ.
(2)$\alpha,\beta$を解にもつ実数係数の4次方程式を1つ例示せよ.
(3)$\beta^5$の値を求めよ.

九州大(類)過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\sqrt5-1+\sqrt{10+2\sqrt5}i$
$\beta=-\sqrt5-1+\sqrt{10-2\sqrt5}i$

(1)$\alpha$を解にもつ実数係数の2次方程式を1つ例示せよ.
(2)$\alpha,\beta$を解にもつ実数係数の4次方程式を1つ例示せよ.
(3)$\beta^5$の値を求めよ.

九州大(類)過去問
投稿日:2022.07.09

<関連動画>

特性方程式て何だよ!漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=b,a_4=20$
$a_{n+2}=4a_{n+1}-4a_n$
一般項を求めよ.

北海学園大過去問
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 

福田の数学〜大阪大学2024年理系第4問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
この動画を見る 

新潟大 座標上の格子点の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93新潟大学
n自然数
$y=x^2$上の$(n,n^2)$における接線をl
$y=n^2$,l,及びy軸の3直線で囲まれた部分(境界含む)に含まれる格子点の数
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分
する点をP、線分CPの中点をQとする。
(1)$\overrightarrow{ AQ }=\frac{\boxed{ス}}{\boxed{セ}}\overrightarrow{ AB }+$
$\frac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{ AD }$である。
(2)線分AG上の点Rを$\overrightarrow{ QR }∟\overrightarrow{ AG }$となるようにとると
$\overrightarrow{ AR }=\frac{\boxed{チ}}{\boxed{ツ}}\overrightarrow{ AG }$である。
(3)直線QRが平面EFGHと交わる点をSとすると
$\overrightarrow{ AS }=\frac{\boxed{テ}}{\boxed{ト}\overrightarrow{ AB }}+$
$\frac{\boxed{ナ}}{\boxed{二}}\overrightarrow{ AD }+\boxed{ヌ}\ \overrightarrow{ AE }$である。

2022上智大学文系過去問
この動画を見る 
PAGE TOP