問題文全文(内容文):
①△ABCにおいて、辺ABを3:2に内分する点をD、辺ACを2:1に内分する点をEとし、 線分BE、CDの交点をFとする。$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AF }$を$\vec{ b },\vec{ c }$を用いて表そう。
①△ABCにおいて、辺ABを3:2に内分する点をD、辺ACを2:1に内分する点をEとし、 線分BE、CDの交点をFとする。$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AF }$を$\vec{ b },\vec{ c }$を用いて表そう。
単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①△ABCにおいて、辺ABを3:2に内分する点をD、辺ACを2:1に内分する点をEとし、 線分BE、CDの交点をFとする。$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AF }$を$\vec{ b },\vec{ c }$を用いて表そう。
①△ABCにおいて、辺ABを3:2に内分する点をD、辺ACを2:1に内分する点をEとし、 線分BE、CDの交点をFとする。$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AF }$を$\vec{ b },\vec{ c }$を用いて表そう。
投稿日:2015.12.17





